
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS
PERFORMANCE ANALYSIS OF WIRELESS NETWORKS

FOR INDUSTRIAL AUTOMATION-PROCESS
AUTOMATION (WIA-PA)

by

Brandon Wyatt

September 2017

Thesis Advisor: Preetha Thulasiraman
Second Reader: John McEachen

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
September 2017

3. REPORT TYPE AND DATES COVERED
Master’s Thesis 06-21-2015 to 09-22-2017

4. TITLE AND SUBTITLE

PERFORMANCE ANALYSIS OF WIRELESS NETWORKS FOR INDUSTRIAL
AUTOMATION-PROCESS AUTOMATION (WIA-PA)

5. FUNDING NUMBERS

6. AUTHOR(S)

Brandon Wyatt

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The Wireless Networks for Industrial Automation-Process Automation (WIA-PA) standard is not well known in North America
and is a relatively new industrial control system standard when compared to WirelessHart and ISA100.11A. An evaluation of the
WIA-PA standard needs to be conducted by Department of Defense and its affiliates to determine whether its operation is on par with
WirelessHart and ISA100.11A. The objective of this thesis is to provide a performance analysis of the WIA-PA standard. Utilizing
MATLAB, we implemented a custom-built WIA-PA system model and measured the end-to-end delay, and received packet error rate
and timeslot utilization. We expect WIA-PA to perform as well as WirelessHart and ISA100.11A in multiple network scenarios. We
also found that due to the limitations of MATLAB, further analysis of the standard should be conducted on a network simulator such
that network traffic can be properly emulated and the standard’s vulnerabilities can be further assessed.

14. SUBJECT TERMS

Cyber, ICS, IEEE 802.15.4, Slotted CSMA/CA, WIA-PA, WSN
15. NUMBER OF

PAGES 109
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

PERFORMANCE ANALYSIS OF WIRELESS NETWORKS FOR INDUSTRIAL
AUTOMATION-PROCESS AUTOMATION (WIA-PA)

Brandon Wyatt
Lieutenant, United States Navy
B.S., University of Utah, 2010

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2017

Approved by: Preetha Thulasiraman
Thesis Advisor

John McEachen
Second Reader

R. Clark Robertson
Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The Wireless Networks for Industrial Automation-Process Automation (WIA-PA) standard
is not well known inNorth America and is a relatively new industrial control system standard
when compared to WirelessHart and ISA100.11A. An evaluation of the WIA-PA standard
needs to be conducted by Department of Defense and its affiliates to determine whether
its operation is on par with WirelessHart and ISA100.11A. The objective of this thesis
is to provide a performance analysis of the WIA-PA standard. Utilizing MATLAB, we
implemented a custom-built WIA-PA system model and measured the end-to-end delay,
and received packet error rate and timeslot utilization. We expect WIA-PA to perform as
well as WirelessHart and ISA100.11A in multiple network scenarios. We also found that
due to the limitations of MATLAB, further analysis of the standard should be conducted on
a network simulator such that network traffic can be properly emulated and the standard’s
vulnerabilities can be further assessed.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Wireless Sensor Networks . 1
1.2 Research Motivations and Objectives 2
1.3 Thesis Contributions . 3
1.4 Thesis Organization . 3

2 Research Review 5
2.1 WirelessHart . 5
2.2 ISA100.11A . 6
2.3 WIA-PA . 6
2.4 Chapter Summary . 7

3 WIA-PA System Model Implementation 9
3.1 IEEE 802.15.4 . 9
3.2 WIA-PA . 17
3.3 Chapter Summary . 20

4 Results and Analysis 21
4.1 Experimental Design . 21
4.2 Simulation Model . 25
4.3 End-to-End Delay . 26
4.4 Received Packet Error Rate . 28
4.5 Link Utilization . 29
4.6 Chapter Summary . 31

5 Conclusions and Future Work Recommendations 33
5.1 Summary and Conclusions . 33
5.2 Future Work . 33

vii

Appendix A CSMA/CA 35

Appendix B MATLAB Code 37
B.1 Classes . 37
B.2 Functions . 45

List of References 87

Initial Distribution List 91

viii

List of Figures

Figure 3.1 Examples of Star and Peer-to-Peer Network Topologies 10

Figure 3.2 Example of a Cluster-Tree Network Topology 11

Figure 3.3 PHY Protocol Data Unit for IEEE 802.15.4 11

Figure 3.4 Superframe Structure for IEEE 802.15.4 13

Figure 3.5 General MAC Frame Structure 14

Figure 3.6 Frame Control Field Structure 15

Figure 3.7 Beacon Frame . 15

Figure 3.8 Superframe Specification . 15

Figure 3.9 Acknowledgement Frame . 16

Figure 3.10 Command Frame . 16

Figure 3.11 Data Frame . 16

Figure 3.12 Example of a WIA-PA Network Topology 18

Figure 4.1 Device Initialization Flow Graph 22

Figure 4.2 Association Flow Graph . 23

Figure 4.3 Transmit Flow Graph . 24

Figure 4.4 Parse Timer Flow Graph . 25

Figure A.1 CSMA/CA Algorithm . 35

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 3.1 Frequency Bands and Data Rates for IEEE 802.15.4 12

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

AL application layer

CAP contention access period

CCA clear channel assessment

CFP contention free period

CSMA/CA carrier sense multiple access with collision avoidance

CPU central processing unit

DCS distributed control systems

DLL data link layer

DOD Department of Defense

FFD full function device

GTS guaranteed time slot

ICS industrial control system

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISA International Society of Automation

ISM industrial, scientific, and medical

LR-WPAN Low-Rate Wireless Personal Area Networks

MAC medium access control

MPDU MAC protocol data unit

xiii

NIST National Institute of Standards and Technology

NL network layer

PAN personal area network

PHY physical

PPDU physical protocol data unit

QoS quality of service

RDC radio duty cycle

RFD reduced function device

SCADA supervisory control and data acquisition

SFD start-of-frame-delimiter

TDMA time division multiple access

USN U.S. Navy

WIA-PA Wireless Networks for Industrial Automation - Process Automation

WMDSR WIA-PA Multi-path Dynamic Source Routing

xiv

Acknowledgments

I would like to take this opportunity to thank the staff and faculty of NPS for a great
educational experience. As Nelson Mandela once said,“Education is the most powerful
weapon which you can use to change the world.” Continue the great work as our military
leans on you to shape its future leaders.

To Dr. Preetha Thulasiraman, my advisor, thank you for your guidance and mentorship.
The project was tough, the road was long, but with your help I made it through. To Dr.
John McEachen, my second reader, thank you for your insight and helping make this thesis
valuable.

To the staff and faculty within the ECE department, you were able to turn this lowly
mathematician into an electrical engineer. I know it was no small feat. Thank you for your
dedication to the students and ensuring the quality of education is second to none.

To my children, you inspire me every day to become better. I hope that one day you
understand how important you were in helping me attain this achievement.

Finally, to mywife, I could not have done this without you. You have sacrificed somuch over
the course of my career. I hope that you take pride and ownership of this accomplishment as
it could not have been done without you. It is truly a sign of your persistence and dedication
as much as it is mine. Thank you!

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

An industrial control system (ICS) is a broad term that encompasses supervisory control and
data acquisition (SCADA), distributed control systems (DCS), and other control systems
that work together to meet industrial objectives [1]. According to the National Institute
of Standards and Technology (NIST), ICSs “are typically used in electrical, water and
wastewater, oil and natural gas, chemical, transportation, pharmaceutical, pulp and paper,
food and beverage, and discrete manufacturing (e.g., automotive, aerospace, and durable
goods) industries” [1]. These examples are indicative of the many different applications of
ICSs in the public and private sectors. As such, ICSs have become an integral part of the
U.S. cyber infrastructure.

The Department of Defense (DOD) is one the largest consumers of ICSs in the federal
government. The DOD has more than 2.5 million unique ICSs [2]. This collection of
specialized systems is pervasive throughout the DOD’s infrastructure. The adoption of the
ICS has modernized DOD capabilities and helped automate complex processes. The U.S.
Navy (USN), both ashore and afloat, utilizes the vast capabilities of the ICS to help “reduce
facility maintenance costs, reduce energy consumption, and support mission assurance” [3].

Early control of industrial processes was maintained through either manual control or the
utilization of hydraulic systems [4]. As technology has advanced, these manual control
processes have been replaced with electronically controlled processes. In traditional ICS
networks, sensors are wired, which restricts their use [5]. Over the last several years,
control systems have begun to integrate wireless sensor network technology. The use
of wireless sensor networks (WSNs) in ICSs provides greater flexibility, scalability, and
inherent intelligent processing [6]. They also provide the ability to automate and monitor
processes that are either too costly or for which it is too difficult to have wiring installed.

1.1 Wireless Sensor Networks
Wireless sensor networks are composed of autonomous sensor networks that are used for
acquiring data from the physical environment [6]. The sensor devices that compose these

1

networks are usually small in size, have limited computing power, use batteries for power,
and have an operating range of approximately 10 meters [7]. The main disadvantage of a
sensor device is the power constraint. The limited power range of a sensor makes the WSN
incompatible with standard Wi-Fi protocols. This constraint has driven the development of
new wireless standards for Low-Rate Wireless Personal Area Networks (LR-WPAN).

The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard for
LR-WPAN was released in 2003. IEEE 802.15.4 defines the specifications for the
physical (PHY) and medium access control (MAC) layers of devices that require low
battery consumption and have low data rates [7]. There are several different standards that
aim to meet the requirements ofWSNs within an ICS, includingWirelessHart, International
Society of Automation (ISA)100.11A, and Wireless Networks for Industrial Automation -
Process Automation (WIA-PA) [8]. These standards use the PHY/MAC layers specified in
IEEE 802.15.4 and then build proprietary data link layer (DLL), network layer (NL), and
application layer (AL) protocols on top.

1.2 Research Motivations and Objectives
Two of the most prevalent standards in WSNs for an ICS are WirelessHart and ISA100.11A
[9]. Both standards are internationally accepted and have been thoroughly researched, as is
documented in the literature. Major international companies such as Honeywell, Siemens,
and Emerson have developed wireless instrumentation technology based on WirelessHart
and ISA100.11A.

The WIA-PA standard was first proposed by the Chinese Industrial Wireless Alliance in
2007. It was approved by the International Electrotechnical Commission (IEC) as an
international standard (IEC62601Ed.1.0.) in 2011 and is currently in its second revision
(IEC62601:2016). WIA-PA offers various advantages over WirelessHart and ISA100.11A.
WIA-PA adopts adaptive frequency hopping, two-level aggregation, and utilization of a
mesh-star network topology [10]. WIA-PA utilizes beacons and is able to coexist with
other beacon-enabled networks, while WirelessHart and ISA100.11A are unable to send or
understand beaconmessages and therefore cannot coexist with beacon-enabled networks [9].
WIA-PA’s mesh and star topology allows distributed communication allocation [9]. The
distributed allocation is completed by the network manager. The network manager allocates

2

resources to the cluster heads, and then the cluster heads allocate resources to the devices
within their clusters. This is in contrast to WirelessHart where the network manager
allocates resources to all devices. ISA100.11A utilizes a backbone of routers for centralized
management [9]. WIA-PA also implements static routing with redundant routing devices
to meet the real-time requirements of an ICS, as compared to source and graph routing
in WirelessHart and ISA100.11A. Graph routing increases the latency of the network;
therefore, the routing algorithms used in WirelessHart and ISA100.11A must be optimized
specifically for use with these standards [9].

Despite these advantages, the WIA-PA standard is not well known in North America and is
a relatively new ICS standard when compared to WirelessHart and ISA100.11A. Although
it is part of the IEC, there is not an extensive amount of research onWIA-PA documented in
the literature. The limited research that is available has been conducted by Chinese research
institutions. Given that the use cases for WIA-PA are extensive [11], an evaluation of the
WIA-PA standard needs to be conducted by DOD and its affiliates to determine whether its
operation is on par with WirelessHart and ISA100.11A. In addition, an analysis of WIA-PA
would provide further insight into possible future exploitation and vulnerability assessment
of the standard.

1.3 Thesis Contributions
The objective of this thesis is to provide a performance analysis of the WIA-PA standard.
The contributions of this thesis are as follows:

• Performance evaluation of WIA-PA on a custom-built system model implemented in
MATLAB

• Analysis of results based on the following WIA-PA performance metrics: end-to-end
delay, received packet error rate, and timeslot utilization

1.4 Thesis Organization
The remainder of this thesis is organized as follows: In Chapter 2 we present a review of
related research involving WIA-PA, WirelessHart, and ISA100.11A. The IEEE 802.15.4
protocol and the WIA-PA standard are discussed in Chapter 3. The experimental model
and analysis of WIA-PA network performance is provided in Chapter 4. In Chapter 5 we

3

present our conclusions and recommendations for future work. Appendix B contains all the
MATLAB code used for the simulations.

4

CHAPTER 2:
Research Review

As technology advances and WSNs begin to be implemented in ICSs, research has been
executed to develop and test methods to meet the rigorous requirements of real-time indus-
trial processes. In this chapter we review some of the research that has been conducted for
each of the three international standards for ICS: WirelessHart, ISA100.11A, and WIA-PA.

2.1 WirelessHart
In 2008, the IEC approved WirelessHart as an international standard. It is an extension
of the Highway Addressable Remote Transducer (HART) protocol, which is a wired ICS
protocol. WirelessHart utilizes graph routing, but leaves the scheduling to be implemented
by the user. As discussed in Section 1.2, graph routing increases the latency of the
network. To minimize this latency, the authors of [8], [12], and [13] proposed multiple
scheduling algorithms to find an optimization that is feasible with the energy constraints
of WSNs. In [14], the authors proposed the implementation of a forward error correction
(FEC) scheme, the employment of channel polarization diversity, and a reduction of the
WirelessHart packet header size. The authors demonstrated that these changes reduced the
power consumption of the protocol and increased energy efficiency.

Since WirelessHart utilizes the non-beacon-enabled mode of IEEE 802.15.4 and time divi-
sion multiple access (TDMA), synchronization across the network is of utmost importance.
Even a slight disparity in timing can have grave consequences in the industrial environ-
ment. The authors of [15] introduced mathematical models to enhance the study of time
synchronization for WirelessHart, while in [16] and [17], the authors proposed methods to
improve the synchronization precision of the network. To help with testing and studying
WirelessHart, several researchers have offered different simulation methods [18], [19]. It is
important to have multiple ways to evaluate the different standards to ensure their reliability.

5

2.2 ISA100.11A
ISA100.11A is a standard that was developed in 2009 and gained IEC approval in 2014.
As with the other WSN standards, ISA100.11A utilizes the 2.4 GHz band of the industrial,
scientific, and medical (ISM) unlicensed band. IEEE 802.11 uses the same band. The
authors of [20] showed that an ISA100.11A network could operate without degradation
within radio range of an IEEE 802.11 network. There are many protocols that operate within
the 2.4 GHz band, which leads to congestion and interference when multiple protocols are
operating within radio range. To assist with operating in a congested frequency band, [21]
and [22] studied adaptive channel diversity for ISA100.11A and showed that this method
helps to avoid interference from congestion.

ISA100.11A, as in WirelessHart, utilizes the non-beacon-mode of IEEE 802.15.4 and a
timeslot scheme for communication. With this comes the need for synchronization and a
scheduling algorithm to ensure real-time processing. The authors of [23] offered a Traffic-
Aware Message Scheduling method that improved throughput and end-to-end delay for
ISA100.11A. As for synchronization, [24] proposed a novel self-organized synchronization
method based on the synchronization patterns of male fireflies found in Southeast Asia.

2.3 WIA-PA
The Chinese-developed WSN standard for ICS, WIA-PA, was accepted by the IEC in
2011 [10]. This standard is the only one of the three that implements the beacon-enabled
mode of the IEEE 802.15.4 standard. The beacons are used for initial synchronization of
joining nodes, but the standard also utilizes a time synchronization packet that was pro-
posed in [25]. By using beacons, WIA-PA is compatible with other beacon networks, as
discussed in [9]. This allows WIA-PA to operate in areas without causing or experiencing
interference. In addition, WIA-PA is the only standard of the three that fully implements
IEEE 802.15.4 [9]. This allows WIA-PA interoperability with other WSNs. The authors
in [26] noted that WIA-PA’s use in ICSs is limited due to real-time constraints. They pro-
posed a scheduling algorithm that utilized the centralized and decentralized communication
allocation properties of the standard to achieve real-time requirements, thereby increasing
the use cases of the standard.

WIA-PA utilizes static routing by default. In [27], a dynamic source routing protocol called

6

WIA-PA Multi-path Dynamic Source Routing (WMDSR) was proposed. As noted in [9],
source routing induces a higher latency as compared to static routes. Therefore, source
routing was not adopted by the standard.

2.4 Chapter Summary
In this chapter, we discussed the existing research pertaining to WirelessHart, ISA100.11A,
and WIA-PA. We presented the limitations and challenges of each standard. We also
discussed the advantages of WIA-PA.

7

THIS PAGE INTENTIONALLY LEFT BLANK

8

CHAPTER 3:
WIA-PA System Model Implementation

In the following sections of this chapter we discuss the IEEE 802.15.4 standard on which
WIA-PA is based. We also discuss the ways in which WIA-PA uses and extends IEEE
802.15.4.

3.1 IEEE 802.15.4
As was stated in Chapter 1, IEEE 802.15.4 defines the PHY andMAC layers of lower power
devices. In the sections that follow, we describe the components of IEEE 802.15.4 that are
implemented for our WIA-PA model.

3.1.1 Components
The IEEE 802.15.4 protocol defines two types of devices, a full function device (FFD) and
a reduced function device (RFD) [7]. The FFD refers to a device that has routing capability.
An FFD can act as a personal area network (PAN) coordinator, a coordinator, or a device
within the network. An FFD acting as a PAN coordinator has ownership of the network
and allows other devices to join. If the FFD is acting as a coordinator, it is routing traffic
to and from devices and the PAN coordinator, but does not allow for devices to join the
network. If the FFD is set to operate in the device mode, it will only transmit data and does
not have any routing functionality or joining capability. An RFD is generally a sensor node
that is providing data to the network. It does not have routing capability or ownership of
the network.

3.1.2 Topology
Within an IEEE 802.15.4-enabled network, these FFDs and RFDs can be combined to form
either a star network topology or a peer-to-peer network topology [7]. The star topology
is a one-hop network construct in which there is a single PAN coordinator and all other
devices of the network can only communicate with the PAN coordinator. The next topology
is peer-to-peer or mesh. In this network construct there is only one PAN coordinator but

9

multiple coordinators and each device in the network can communicate with any other
device. This type of network is considered multi-hop, as the data can traverse multiple
devices from source to destination. Examples of the star and peer-to-peer topologies are
shown in Figure 3.1.

Figure 3.1. Examples of Star and Peer-to-Peer Network Topologies. Source:
[7].

A cluster-tree network topology is a combination of the star and peer-to-peer topologies
and is the topology used in this thesis. In this construct there is one PAN coordinator and
multiple coordinators. The coordinators form a peer-to-peer network. The devices connect
to the coordinators to form the star topologies. Note that the coordinators can communicate
with other coordinators in range. However, the devices can only communicate with their
corresponding coordinator. An example of a cluster-tree network topology is shown in
Figure 3.2.

3.1.3 Physical Layer
The physical layer of the IEEE 802.15.4 utilizes several operational frequencies bands with
differing data rates [7]. Listed in Table 3.1 are all available bands for IEEE 802.15.4 as well
as the corresponding data rates and modulation schemes. The focus of this thesis will be on
the 2.4 GHz frequency band. In this frequency band, 16 channels are available between 2.4
and 2.4835 GHz with 5 MHz spacing. The physical layer is also responsible for the radio
duty cycle (RDC) and clear channel assessment (CCA). This RDC turns the radio on and
off and is important to meet the low power constraint of the sensor devices. The CCA is a
process by which the physical layer determines if the channel is in use.

10

Figure 3.2. Example of a Cluster-Tree Network Topology. Source: [7].

PHY Protocol Data Unit
The physical protocol data unit (PPDU) has a maximum size of 133 bytes. It includes
a preamble, composed of 32 zeros, and an 8-bit start-of-frame-delimiter (SFD), which
is defined as 11100101 [7]. The PPDU also contains the payload and a seven-bit field
representing the length of the payload in bytes. The length field limits the PPDU amaximum
payload of 127 bytes. The PPDU for IEEE 802.15.4 is presented in Figure 3.3.

Figure 3.3. PPDU for IEEE 802.15.4. Source: [7].

3.1.4 Medium Access Control Layer
The MAC layer is the interface between the physical layer of IEEE 802.15.4 and the higher
layer protocols. It is responsible for managing beacons, accessing the channel, managing
time slot allocation, as well as device association and disassociation [7]. The IEEE 802.15.4
MAC layer supports two modes: beacon-enabled and non-beacon-enabled. In the beacon-
enabled mode, the PAN transmits beacons to synchronize all attached devices and provide

11

Table 3.1. Frequency Bands and Data Rates for IEEE 802.15.4. Source: [7].

the structure of the superframe. The superframe structure is shown in Figure 3.4. The
superframe provides the basis for communication within the PAN.

The rate at which beacons are sent is the reciprocal of the beacon interval BI, is determined
by the variable beacon order BO and can be changed to meet the demands of the PAN.
Each coordinator, or FFD, within the PAN will use the same BI. The BO is a value within
the range 0 ≤ BO ≤ 15. If the BO = 15, the PAN is operating in the non-beacon-enabled

12

Figure 3.4. Superframe Structure for IEEE 802.15.4. Source: [7].

mode and will not transmit beacons regularly. Otherwise,

BI = aBaseSuper f rameDuration · 2BO, (3.1)

where aBaseSuper f rameDuration is defined as

aBaseSuper f rameDuration = aNumSuper f rameSlots · aBaseSlotDuration (3.2)

with aBaseSlotDuration = 60 symbols/slot and aNumSuper f rameSlots = 16 slots.

The BO establishes the frequency of the beacon interval, but the duration of the active period
is governed by the superframe order SO. This value is within the range 0 ≤ SO ≤ BO ≤ 15.
If the SO = 15, then BO = 15 and the PAN is operating in the non-beacon-enabled mode.
For the superframe to contain an inactive period, SO < BO. An example of the superframe
inactive period is shown in Figure 3.4b. The superframe duration, SD, is calculated as

SD = aBaseSuper f rameDuration · 2SO . (3.3)

The active period of the superframe is divided into 16 time slots of equal duration. These
time slots are grouped into a contention access period (CAP) and a contention free period
(CFP). During the CAP, if a device needs to transmit it must use the slotted variant of

13

carrier sense multiple access with collision avoidance (CSMA/CA) prior to transmission.
CSMA/CA is described in further detail in Section 3.1.5.

Devices requiring a guaranteed quality of service (QoS) are assigned a guaranteed time
slot (GTS) during the CFP. This means that a specific timeslot has been allocated to a
specific device similar to a TDMA construct. The CAP is shortened by the amount of the
CFP so that both periods are contained within the active portion of the superframe. The
inactive period of the superframe allows devices to sleep, meaning that a device has the
ability to turn off its radio with the assumption that no communications will occur during
this period. As mentioned previously, the IEEE 802.15.4 non-beacon-mode does not send
beacons regularly and all devices desiring to transmit must contend for the channel using
the unslotted CSMA/CA without the option of a GTS. The slotted variant of CSMA/CA
will be the focus of this thesis.

MAC Protocol Data Unit
The MAC protocol data unit (MPDU) sets the structure for the MAC frame. The general
MAC frame construct is shown in Figure 3.5.

Figure 3.5. General MAC Frame Structure. Source: [7].

Each frame uses the frame control field to identify how the frame is constructed [7]. The
details of the frame control field can be seen in Figure 3.6. The frame type field identifies
which frame is being transmitted: beacon, data, acknowledgement, or command. The
security enabled field indicates whether or not the PAN is operating with encryption. The
frame pending field is used by a coordinator to signal that data is pending for a node within
its cluster. The PAN ID compression field is a one-bit field that allows for the omission of
one of the two PAN identifier fields in the MAC frame, if the two fields are the same. The

14

addressing modes are two-bit fields that identify whether the corresponding address field is
present, and if it contains the 16-bit or 64-bit address.

Figure 3.6. Frame Control Field Structure. Source: [7].

IEEE 802.15.4 defines four MAC frame types: beacon, acknowledgement, data, and com-
mand. The beacon frame shown in Figure 3.7 is used to synchronize the devices in the
PAN and to provide the structure of the superframe. The MAC payload of the beacon
frame contains the superframe specifications, shown in Figure 3.8. The devices within the
PAN extract the superframe specifications to determine the active and inactive portions, as
discussed in Section 3.1.4.

Figure 3.7. Beacon Frame. Source: [7].

Embedded within the superframe specification is the BO, SO, the timeslot in which the
CAP ends and whether or not the beacon received is from the PAN coordinator.

Figure 3.8. Superframe Specification. Source: [7].

Acknowledgement frames within IEEE 802.15.4 are only transmitted after receipt of data or
command frames and if the acknowledgement request field is set in the frame control field.

15

Figure 3.9. Acknowledgement Frame. Source: [7].

The acknowledgement frame shown in Figure 3.9, contains no addressing information and
only identifies the frame sequence number to which it is in response.

The command frame structure can be seen in Figure 3.10. These frames are used for control
of the PAN, to include device joining, association, disassociation, and for devices to request
pending data from the coordinator.

Figure 3.10. Command Frame. Source: [7].

The data frames are used to communicate all other data not related to coordination and
control of the PAN. The data frame structure is shown in Figure 3.11.

Figure 3.11. Data Frame. Source: [7].

3.1.5 Functional Overview

Data Transfer
There are three data transfer concepts in IEEE 802.15.4 [7]. Data can be transmitted from a
coordinator, to a coordinator, and peer-to-peer. When a coordinator needs to transmit data to

16

a connected device and is operating within a beacon-enabled PAN, it will utilize the beacon
to signal that it has data and indicate the device for which the data is intended. If the PAN
is non-beacon-enabled, the coordinator will hold the data until the intended device submits
a request for the data. When data is transferred to a coordinator in the beacon-enabled
mode, the device must synchronize to the beacon frame and transmit when appropriate. In
a non-beacon-enabled PAN, the device utilizes unslotted CSMA/CA to transmit the data.
For data to be transferred among peers, the devices transmit directly to all other devices
within its radio transmit range. This requires each device to either listen continuously or
synchronize with each peer to ensure receipt of transmission.

CSMA/CA
CSMA/CA is a carrier sensing protocol, by which a device wanting to transmit waits a
random amount of time (called a backoff period), senses the channel to determine if it is
available, and then transmits when able [7]. The algorithm implemented for CSMA/CA is
represented in Appendix A. CSMA/CA can be utilized in one of either two modes, slotted
or unslotted. When the unslotted mode of CSMA/CA is used, the backoff period of each
device is unrelated to any other device. In the slotted mode, the backoff period boundaries
are aligned to the timeslots of the superframe for each device.

3.2 WIA-PA
As previously discussed, WIA-PA is based on and extends the IEEE 802.15.4 standard. The
following sections describe how WIA-PA does this.

3.2.1 Components
WIA-PAmaintains the IEEE 802.15.4 definitions of FFD and RFD, but renames the devices
based on roles [28]. The standard identifies five devices: host configuration computer,
gateway, routing device, field device, and handheld device. The purpose of the host
configuration computer is to set the parameters for all of the superframes within the network,
provide resources when devices initiate a join request, assign communication resources to
the routing devices, and create and disseminate all routing tables within the network. The
gateway and routing devices are the same as the FFD in IEEE 802.15.4 and provide the

17

network connectivity and routing. The field devices are sensors and the handheld devices
are remote network management or user access points.

3.2.2 Topology
The topology that WIA-PA utilizes is a combination peer-to-peer and star [28]. The routing
devices communicate with each other in a peer-to-peer topology, with each routing device
able to head its own star. An example of this network topology is shown in Figure 3.12.

Figure 3.12. Example of a WIA-PA Network Topology. Source: [28].

3.2.3 Physical Layer
WIA-PA only allows the 2.4 GHz frequency band and a data rate of 250 kbps [28]. IEEE
802.15.4 defines channels 11 - 26 to frequencies 2,405 MHz to 2,480 MHz, with 5 MHz
spacing [7]. WIA-PA does not support channel 26, as defined in IEEE 802.15.4, as it is not
universally compliant [28].

18

3.2.4 Medium Access Control Layer
TheMAC layer specification inWIA-PAutilizes the beacon-enabledmode of IEEE 802.15.4
and the BI is defined as in (3.1) [28]. The active portion of the WIA-PA superframe is
divided into the CAP and the CFP. The CAP is only utilized for device joining and
association and management of the PAN. CSMA/CA is utilized during this period for
communication. Upon completion of the CAP, all other communications occur during
assigned timeslots. The CFP is designated for communication between the cluster head
and handheld devices. WIA-PA extends the IEEE 802.15.4 superframe and utilizes the
inactive portion for intra- and inter-cluster communication as well as device sleeping. As
the WIA-PA superframe includes the inactive portion, the base superframe duration is
calculated by setting the aNumSuper f rameSlots to 32 in (3.2).

WIA-PA allows for multiple superframes across the PAN, however each routing device and
RFD is only associated with one superframe at a time [28]. Each superframe can be made
up of a different number of timeslots, but the timeslot duration will be constant across the
PAN. This is configured by the host configuration computer based on the requirements of
the devices within a given cluster. The short address of devices joining the network are also
assigned by the host configuration computer. The short address is 16 bits long, where the
most significant eight bits designate the cluster and the least significant eight bits identify
the device within the cluster.

3.2.5 MAC Protocol Data Unit
The MPDU has some differences from that of IEEE 802.15.4. Within the frame control
field, the security field is always zero and the PAN ID compression flag is always set to
one [28]. This means that communication is not allowed between PANs. After a device
joins, it must utilize its short address to communicate. WIA-PA does not utilize the GTS
of IEEE 802.15.4. Instead, the network layer assigns links and communication resources to
devices based on the update rate of the device. The link information includes a timeslot, a
channel, and type of communication, which is either transmit, receive, or share.

The MAC layer is also responsible for synchronizing devices upon joining the network.
This occurs via the beacon frame. WIA-PA adds a payload to the beacon that includes the
cluster ID with which the beacon is associated, the absolute slot number, a timer value, and

19

the channel on which the next beacon will be transmitted [28]. The absolute slot number is a
timeslot counter that is incremented by one for each timeslot. The timer value is the elapsed
time from the transmission of the beacon to the beginning of the timeslot. Before a device
joins the network, it passively scans for beacons and synchronizes with the information in
the beacon payload. This synchronization does not have enough fidelity to meet real-time
requirements so the routing devices will also transmit synchronization command frames.

3.3 Chapter Summary
In this chapter, we discussed the IEEE 802.15.4 standard and the ways in which WIA-PA
uses and extends the standard. The discussion of this chapter provides the foundation for
our MATLAB implementation of WIA-PA.

20

CHAPTER 4:
Results and Analysis

In this chapter we present our experimental design and systemmodel used in the simulations.
We also discuss the various components of the WIA-PA standard that are implemented for
this thesis. The performancemetrics that we evaluated on theWIA-PAmodel are as follows:

• end-to-end delay: the delay incurred from the time a packet is transmitted by a node
to when it is reached by the gateway

• received packet error rate: the number of packets received in error by the gateway
calculated as a percentage of total packets transmitted

• timeslot utilization: a measure of how well WIA-PA nodes maximize timeslot use

4.1 Experimental Design

Initialization
The system model includes two MATLAB class definitions: wia_ffd.m (Appendix B.1.1)
and wia_rfd.m (Appendix B.1.2). These classes form the template for the devices and
allocate properties necessary for the devices to operate in the network. For example, the
classes create buffers r x and t x, which are buffers to hold data that either a device received
or will transmit. Other properties that are created, such as cluster_id, my_short_address,
and bcn_payload, provide allocated resources for the device to store data from commu-
nications it receives from the network. The cluster_id identifies the cluster to which a
device is connected and also serves as the first two octets of the device’s short address once
associated. The short address of a device is stored in the my_short_address property.

The beacons that are transmitted by FFDs contain payload information that is important for
network synchronization [28]. This information is stored in the bcn_payload property.
When a device is initialized, certain properties are set depending on the type of device
desired. For example, when an FFD is initialized as a PAN coordinator, the associated

parameter, the my_short_address property, and information required for beacon structure
are set. The other FFDs and RFDs are initialized without this information and will obtain

21

the appropriate property values during the association process. Along with allocating these
properties, these classes build timers to allow for the device functions. TheMATLAB timer
class was utilized to allow for pseudo multi-threading capability. The timers themselves
will run as an individual process, but the functions that the timers execute are scheduled
to the processor serially. These timers allow the device to send data or check the status
of properties on a given interval. The main difference between the two class definitions
is that the wia_ffd class uses a beacon timer, while the wia_rfd class uses a data timer.
In our model, we are not considering the FFD as sending its own data, even though it is
able to. The RFDs, however, do not transmit beacons and, therefore, do not have a beacon
timer [28]. The flow chart describing device initialization is shown in Figure 4.1.

Device

Initialization

Set Timers

PAN Coordinator

Tx Beacons

 Y

Associated

 N

Parse and Respond

FFD

 Y

Initiate Association

 N

 Y

Tx Data

 N

Figure 4.1. Device Initialization Flow Graph

22

Association
When a device (that is not the PAN coordinator) is initialized, it is not associated to the
PAN. The device begins listening for beacons. Once a beacon is received, the device will
transmit an association request command frame within the CAP. Once the PAN coordinator
receives the association request, from one or multiple devices, it will set the f ramepending

flag in the beacon and append the intended addresses in the beacon payload. After receiving
the next beacon, each device listed in the payload will send a data request to poll for the
pending data. The PAN coordinator will then provide the device with a short address for
the network [28].

If the associating device is a routing device, its address will be X X00 where X X is a
hexadecimal representation of the cluster ID [28]. If the device is an RFD, its address will
be X XYY , where X X is the cluster ID and YY is the host identification within the cluster.
Once a routing device is associated, it will begin transmitting its own beacons to devices
within its transmission range. The PAN coordinator has to provide the association response.
For a node two or more hops away, the parent must forward the association request to the
PAN coordinator and forward the response back to the node. No device is able to send data
on the network until it is associated. Once associated, the node sends data to its parent,
which forwards data to the gateway. An example of the association flow can be seen in
Figure 4.2 [28].

Association Timer Associated Assoc Req Sent N

Assoc Resp Rx Y

Send Assoc Req

 N

 N
Associated Y

Figure 4.2. Association Flow Graph

Data Transfer
To allow for the simulation of data transfer, we build neighbor tables to simulate the radio
transmission range of the devices. These neighbor tables are created after all the devices are
initialized, but before the timers are started. When a device wishes to communicate, it calls
the transmit function (Appendix B.2.28). This is the function that fully creates the PPDU
that will be transmitted. Within the function is a call to have the MPDU created (Appendix
B.2.12). When the MPDU is returned to the transmit function, the rest of the PPDU header

23

is added and a call to the channel (Appendix B.2.8) function is made. The transmit function
then adds the packet to a send buffer. Each device has a send timer that polls this buffer and
determines when a packet is available for transmission. If the packet is a data frame, the
packet will be scheduled to be added to the channel during the appropriate timeslot, while
a command frame will need to be transmitted during a CAP [28]. The channel function
copies the data to be transmitted into the channel buffer of each device within its neighbor
table. To simulate data propagation within the channel, we delay copying the data to the
channel buffer by the amount of time calculated as

Delay =
length(PPDU)

Rb
, (4.1)

where Rb is the bit rate of 250 kbps [28]. A depiction of how the transmit function operates
can be seen in Figure 4.3.

transmit.m

create_wia_frame.m

transmit.m CAP

channel.m Y

Schedule Tx

 N

Figure 4.3. Transmit Flow Graph

Each device also polls its receive buffer, utilizing the parse timer to see if data is available.
When data is found, the devices immediately parse the packet to build the required informa-
tion for the superframe. The parse timer calls the parse function (Appendix B.2.19), which
simply removes the first item from a received frame buffer, calls the parse_wia function,
and fills the r x buffer as the data is parsed. Once the received packet has been parsed,
the parsed function is called. The parsed function determines how the device responds
depending on how its parameters are currently set. For example, after a device receives a
beacon, it is the parsed function that checks to see if the device is associated or whether it

24

is an FFD. It then initiates the appropriate response. The parse timer continuously checks
the state of the receive buffer. A simple flow chart depicting the use of this timer is shown
in Figure 4.4.

Parse Timer parse.m parse_wia.m parsed.m Decision

Figure 4.4. Parse Timer Flow Graph

4.2 Simulation Model
WIA-PA allows for the number of timeslots within a superframe to be set by the user [28].
For simplification, we chose to use a superframe consisting of 32, 10-ms timeslots. We
divided the 32 timeslots equally among the four periods of the superframe: CAP, CFP,
intra-cluster period, and inter-cluster period. We ignored a dedicated sleep period across
the network. Within the inter-cluster period, we required the cluster heads to share a single
channel. WIA-PA allows for multiple channel use, but utilizing multiple channels reduces
the problem to a single cluster scenario [28]. We chose to utilize only a single channel
within the inter-cluster period to expand our testbed. By using the single channel during
the inter-cluster period, we are limited to eight timeslots for each period of the superframe,
which restricts our network size to a total of eight nodes. The number of nodes is determined
by the number of timeslots available in the inter-cluster period. Since there are only eight
timeslots, the cluster heads are only able to forward data to the gateway for eight nodes.

Next, we assumed that each device has successfully joined the network, in accordance
with [28]. Our model does not simulate the joining process because we were not able to use
multiple processing threads in our MATLAB implementation. The utilization of multiple
process threads allows for processes to be scheduled in parallel. Without using multiple
processing threads, each process is scheduled serially on the central processing unit (CPU)
instead of in parallel.

During the joining process, a node is allocated a short address and a timeslot for data
communication [28]. The timeslot allocated to each node, within the intra-cluster period,
corresponds to the node’s short address. For example, the node with short address 0101 is
the first node of cluster 01. It will transmit at the start of the first timeslot of the intra-cluster

25

period, or timeslot 16 within the superframe [28]. The cluster heads transmit in order of
cluster number and use the number of slots equal to the number of child nodes. Cluster head
0100 with three nodes would then transmit for the first three timeslots of the inter-cluster
period, or timeslots 24 to 26. We implemented this scheduling method, since a scheduling
method is not defined in [28].

Another assumption that we made is that data is transmitted only from the node to the
gateway. During the delay and received packet error rate simulations, we did not include
acknowledgement frames, since acknowledgement frames are not required [28]. Acknowl-
edgement frames were, however, considered during the timeslot utilization calculations.

As discussed previously, our implementation does not utilize multiple process threads.
MATLAB is only able to schedule processes at intervals of 1 ms, but implementing this
becomes too computationally intensive and other process do not get scheduled. Due to
this, we expanded our simulation time to be in terms of seconds, and scaled data rates and
processing rates to match. For simulation purposes, our timeslot within the superframe
is one second and the data rate is 2.5 kbps, as compared to the 10 ms and 250 kbps
intended [28].

4.3 End-to-End Delay
In this section we measure the time required for a gateway to receive data from a node
within the network. We look at three situations: a single cluster containing a single node, a
single cluster containing eight nodes, and two clusters containing four nodes per cluster.

4.3.1 Single Cluster Containing Single Node
In the case of a single cluster containing a single node, the theoretical delay tdelay is defined
as

tdelay = ttrans + tprop + 8tslot, (4.2)

where ttrans is how long it takes for the device to physically send the data, tprop is how long
the data takes to propagate through the channel (based on a distance of 10 m [7]), and 8tslot

is the duration between the node’s allocated timeslot and that of the cluster head [28]. Based
on the parameters of our model and with a frame size of 176 bits, tdelay equates to 8.07 ms.

26

We observed an average end-to-end delay of approximately 8.083 ms from 1000 transmitted
data frames. The measured delay shows a .16% increase over the expected delay, which is
believed to be caused by variances in the MATLAB implementation.

4.3.2 Single Cluster Containing Eight Nodes
Our next simulation increased the cluster size. The delay equation (4.2), applies to all nodes
within the cluster. With this, we expected to see a delay of 8.07 ms, as in the single node
case. The average delay that we observed in this case was 8.125 ms. This delay is a .52%
increase over the expected value from the single node case. We believe that the increased
delay is due to computational resources in MATLAB. The delay grows incrementally as the
number of nodes grows. However, in this scenario, the number of nodes should not affect
the delay of any other node.

4.3.3 Two Clusters Containing Eight Nodes Total
For our third simulation, we increased the number of clusters, and included four nodes in
each cluster. In this case, the expected delay is the 8.07 ms for the nodes in the first cluster,
but the second cluster has an additional delay of 4tslot , as seen in

tdelay = ttrans + tprop + 8tslot + 4tslot . (4.3)

This additional delay is incurred because the gateway allocates cluster heads with timeslots
within the inter-cluster period based on the number of nodes within each respective cluster
[28]. Since the first cluster contains four nodes, the added delay for the second cluster is
4tslot , and the expected delay for the nodes within the second cluster is 12.07 ms. Here,
again, we observed an increase in delay as the complexity of the network increased. We
observed an 8.234 ms delay for the first cluster and a 12.335 ms delay for the second. The
results confirm the expected increase of the delay in the second cluster, but is higher than
expected. This result is again believed to be due to resource constraints within MATLAB.

WIA-PA, WirelessHart, and ISA100.11A utilize TDMA for data communication within
allocated timeslots [9]. While WirelessHart and ISA100.11A mainly implement a mesh-
network configuration and our model of WIA-PA implements a mesh-star topology, the
analysis of the delay in each network reduces to analyzing the delay within individual

27

timeslots over the number of hops between the node and the gateway. Since WirelessHart
and ISA100.11A utilize graph-based routing, the delay equation becomes

tdelay = ttrans + tprop + tslot (4.4)

for the single node case [9]. As the number of routing devices and nodes increase in a
WirelessHart and ISA100.11A network, the delay also grows, but is determined by the
routing algorithm and the order in which the devices are scheduled to transmit.

Within our model, the results from the end-to-end delay of the single cluster with a sin-
gle node shows that there is a 7tslot greater delay in WIA-PA. As the complexity of the
network topology grows, the delay is deterministic based on the number of nodes in the
network. However, the delay in WirelessHart-enabled and ISA100.11A-enabled networks
is dependent upon the routing algorithm and when nodes are scheduled to transmit [9].

4.4 Received Packet Error Rate
Another key aspect of WIA-PA performance is the received packet error rate. To measure
this rate, we count the number of data packets transmitted by a node and the number of
packets correctly received by the gateway over a 24-hour period. We then calculate the
percentage received by the gateway in error. We test the same three scenarios as in Sections
4.3.1-4.3.3.

4.4.1 Single Cluster Containing Single Node
During this scenario, a single node transmitted a packet every second, which led to 86,400
data frames transmitted during the 24-hour period. The gateway correctly received all
86,400 data frames, resulting in a 0% received packet error rate for this simulation.

4.4.2 Single Cluster Containing Eight Nodes
This simulation consisted of 691,200 data frames transmitted equally across the eight nodes
within the same cluster. This time the gateway only received and correctly parsed 669,376
data frames. This simulation yielded an error rate of 3.16% for our model. This scenario
simulates only one cluster, and each node within the cluster is allocated its own timeslot. We

28

expected to see the same results as in the simulation with only a single cluster and a single
node. The increase in error from this simulation is believed to be due to MATLAB. As
with the end-to-end delay results presented in Sections 4.3.1-4.3.3, the increase in number
of nodes of the cluster also increases resource requirements in MATLAB and leads to
increased error rates.

4.4.3 Two Clusters Containing Eight Nodes Total
This simulation consisted of 691,200 data frames transmitted equally across the eight nodes,
but this time the nodes are separated into two different clusters. During this simulation, the
gateway correctly parsed only 620,237 data frames. This resulted in an error rate of 10.27%
for our model. Aside from the increase in theoretical delay, this simulation should also
reduce to the single cluster with a single node case. The increase in incorrectly received
packets is due to resource constraints within MATLAB as the complexity of the network
increases.

4.5 Link Utilization
IEEE 802.15.4 allows for data to be transmitted utilizing either CSMA (during the CAP) or
TDMA (within a GTS) [7]. Devices, based solely on IEEE 802.15.4, must request a GTS
when a deterministic delay is desired. Therefore, there are two types of link utilization:
contention based and link. WIA-PA, however, uses the CAP only for network management
and TDMA for all data communication [28]. Similarly, WirelessHart and ISA100.11A
use TDMA for data transmission for deterministic delay [9]. Link utilization within a
WIA-PA enabled network, and an IEEE 802.15.4 GTS, is essentially a measure of timeslot
utilization. This is due to the fact that WIA-PA nodes only transmit data during allocated
timeslots [28]. To ensure maximum timeslot link utilization, the timeslot duration must
equal the propagation duration of the data frame, when acknowledgement frames are not
required. The timeslot duration tts is defined by

tts =
8maxPPDU

Rb
, (4.5)

where maxPPDU is 133 bytes (as described in Section 3.1.3), and Rb is the bit rate of 250
kbps [7].

29

Using

U =
(
8PPDU

Rbtts

)
· 100, (4.6)

we see that timeslot utilization U is 100% when tts is set to 4.256 ms and a frame with
maximum data length is transmitted.

When acknowledgement frames are required, (4.5) is modified to

tts =
8(maxPPDU + PPDUack)

Rb
, (4.7)

where PPDUack is 11 bytes long [7]. Using (4.6) and (4.7), we find that 4.608 ms is the
minimum tts timeslot duration required to maximize the timeslot utilization when including
acknowledgement frames.

In our model, the tts is 10 ms and the PPDU is 22 bytes long. Using (4.6), we find that
timeslot utilization of our model is 7.04%. If we utilized a frame with maximum data
length, our timeslot utilization increases to 42.56% [7]. If we require acknowledgement
frames as well, we see that our timeslot utilization increases to 46.08%.

While the model’s timeslot utilization is low, the battery life of the node is extended. This
is because the node is in a sleep state when not transmitting during a timeslot [28]. The
lower the tts, the shorter the superframe duration, and therefore the more often the node is
active and not sleeping. The power efficiency can be improved by increasing the tts, thereby
increasing the amount of time the device is in a sleep state [29]. Also, the timeslot utilization
determined in our model is the same as the timeslot utilization found in a WirelessHart or
an ISA100.11A network since they also use the IEEE 802.15.4 data link layer standard [9].
WirelessHart requires a 10 ms timeslot, thus the timeslot utilization would be exactly the
same as that of WIA-PA [9]. The timeslot duration within an ISA100.11A network is
configurable, but the utilization would also be the same provided a timeslot duration of 10
ms is used [9].

30

4.6 Chapter Summary
In this chapter, we compared the end-to-end delay of our model with the theoretical delay
based on the WIA-PA standard. Our results indicate that the end-to-end delay of our model
is consistent with the theoretical values in the simplest case. Our end-to-end delay results
are also similar to the expected delays in WirelessHart and ISA100.11A networks [9].
However, as the number of nodes in our model is increased, the delay also increases. This
increase is not due to the WIA-PA standard, but instead due to the computational expense
in MATLAB. We also measured the received packet error rate for our model during a
24-hour period for three different situations. This error rate increased as we increased the
number of nodes and complexity of the model. As with the measured delay, we believe
that the rate of increase of the received packet error rate, between the different scenarios,
is influenced by the computational expense of the model’s complexity within MATLAB.
Finally, we calculated the minimum timeslot duration to maximize the timeslot utilization.
We determined that the timeslot utilization for our model is less than 50%, which leads to
an increase in sleep duration of the nodes when compared to a higher timeslot utilization.
This timeslot utilization is the same as expected in a WirelessHart network, as well as in an
ISA100.11A network configured to use a timeslot with a duration of 10 ms [7].

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

CHAPTER 5:
Conclusions and Future Work Recommendations

5.1 Summary and Conclusions
An ICS is a vital asset to the DOD. The addition of WSNs to an ICS has facilitated
greater automation and network scalability. WIA-PA, WirelessHart, and ISA100.11A are
all wireless standards that can be used in an ICS. However, the advantages of WIA-PA over
WirelessHart and ISA100.11A make this standard a viable option for expanded use outside
of China. To establish a performance base for this standard, we built a custom model in
MATLAB. We have shown that our model provides end-to-end delay results comparable
to the theoretical delay based on the WIA-PA standard, and confirms the deterministic
capacity for data transmission of the WIA-PA standard. We also measured the error rate of
our model. For the simple case, we observed no error between the number of data packets
transmitted by the node and the number received by the gateway. As the number of nodes
and complexity of the model was increased, however, we observed an increase in the error
rate. Finally, we calculated the timeslot utilization of our model. We determined that our
model maintained a very low timeslot utilization.

We expect WIA-PA to perform as well as WirelessHart and ISA100.11A with the added
advantage of being able to coexist with other beacon-enabled networks. In the simplest
scenario of our model, the measured results should be the same as expected in the other
network implementations. The discrepancies we found in our simulations are believed to
be due to the simulation environment, and not because of the WIA-PA implementation.

5.2 Future Work
In this thesis, we demonstrated that WIA-PA performs effectively in multiple network
scenarios. However, there are areas of follow on research that would facilitate further
analysis of the standard.

33

5.2.1 Network Simulator
MATLAB is not suited to efficiently simulate networks with network traffic. The imple-
mentation of WIA-PA using a network simulator, such as Contiki or the NS family, would
make it more robust and provide more opportunities for in-depth analysis.

5.2.2 Validation of Security
The security of WIA-PA has not been characterized and the standard has not been subjected
to various forms of attacks. A thorough security analysis needs to be undertaken to assess
the standard’s vulnerability and exploitability.

5.2.3 Routing
WIA-PA currently only supports static routing. By extending the standard to incorporate a
dynamic routing protocol, such as Routing Protocol for Low-Power Lossy Networks (RPL),
WIA-PA can be made more robust and instill self-healing capabilities.

34

APPENDIX A:
CSMA/CA

Figure A.1. CSMA/CA Algorithm. Source: [7].

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

APPENDIX B:
MATLAB Code

B.1 Classes

B.1.1 wia_ffd.m

1 % wia_ffd.m in the @wia_ffd folder

2 % This is the class definition for Full Funciton Device (FFD)

3

4 classdef wia_ffd < handle

5 properties

6 name;

7 my_ci;

8 wia_cmd;

9 pan_coord = 0;

10 pan_coord_add = 0;

11 parent_add = 0;

12 cluster_id = '00';

13 pan_id;

14 assoc = 0;

15 my_long_address;

16 my_short_address = 'ffff';

17 next_rt_address = '01';

18 next_leaf_address = {{0}};

19 rx = struct('fcf', [] , 'sf', [], 'p', [], 'ci', [], '...

payload', []);

20 tx = struct('fcf', [] , 'sf', [], 'p', [], 'ci', [], '...

payload', []);

21 bcn_payload;

22 tx_frame=[];

23 rx_frame=[];

24 rec_frame=[];

25 state=1;

26 lock = 0;

27 bcn_frame=[];

37

28 last_seq_num = 0;

29 d_seq_num = 0;

30 b_seq_num = 0;

31 ack_table = [];

32 beacon_t;

33 cc_t;

34 send_t;

35 asn_t;

36 parse_t;

37 p_t;

38 assoc_t;

39 rsn_t;

40 bcn_timestamp;

41 payload = strrep(num2str(ones(1,40)),' ','');

42 chan='';

43 n_table={};

44 waiting = 0;

45 join_table={{}};

46 send_buf = {};

47 send_data_buf = {};

48 direct = '';

49 buffer = {};

50 i;

51 pend_add = {};

52 asn_start=0;

53 rsn=0;

54 alloc;

55

56 count = 0;

57

58 end

59 methods

60 function set_name(obj,num)

61 obj.name = strcat('ffd_',num2str(num));

62 end

63

64 function set_pan_coord(obj)

65 obj.pan_coord = 1;

66 obj.my_short_address = '0000';

67 obj.pan_coord_add = obj.my_short_address;

38

68 obj.assoc = 1;

69 obj.asn_start = 0;

70 end

71

72 function set_long_add(obj, add)

73 obj.my_long_address = strcat('ffffffff', dec2hex(add,8)...

);

74 end

75

76 function set_pan_id(obj, id)

77 if obj.pan_coord

78 obj.pan_id = id;

79 else

80 disp('not pan_coord')

81 return

82 end

83 end

84

85 function struct_init(obj)

86 load('wia_structs.mat');

87 obj.rx=struct('fcf', fcf, 'sf', superframe, 'p', p, 'ci'...

, ci, 'payload', []);

88 obj.tx=struct('fcf', fcf, 'sf', superframe, 'p', p, 'ci'...

, ci, 'payload', []);

89 obj.bcn_payload = bp;

90 obj.my_ci = ci;

91 obj.wia_cmd = wia_cmd;

92 clear fcf sf p ci bp wia_cmd

93 end

94

95 function set_val(obj)

96 obj.my_ci.dev_type = 0;

97 obj.my_ci.power_src = 1;

98 obj.my_ci.rec_idle = 0;

99 obj.my_ci.sec_cap = 0;

100 obj.my_ci.allocate_add = 1;

101

102 obj.tx.sf.BO = 3;

103 obj.tx.sf.SO = obj.tx.sf.BO;

104 obj.tx.sf.finCapslot = 15;

39

105 obj.tx.sf.pan_coord = 1;

106

107 obj.tx.fcf.ack_req = 1;

108 obj.tx.fcf.dest_mode = 2;

109 obj.tx.fcf.src_mode = 2;

110

111 obj.tx.p.src_pan_id = obj.pan_id;

112 obj.tx.p.dest_pan_id = obj.pan_id;

113 obj.tx.p.src_add = obj.my_short_address;

114 end

115

116 function initialize(obj)

117 global ts

118 struct_init(obj);

119 set_val(obj);

120 delay = 0;

121 name = strcat(obj.name, '_beacon');

122 obj.beacon_t = timer('Name',name,'TimerFcn',@(¬,¬)beacon...

(obj),'StartDelay',delay,'ExecutionMode','fixedRate',...

'Period',32*ts);

123 name = strcat(obj.name, '_asn');

124 obj.asn_t = timer('Name',name,'TimerFcn',@(¬,¬)inc_asn(...

obj),'BusyMode', 'queue','ExecutionMode','fixedRate',...

'Period',ts);

125 name = strcat(obj.name, '_send');

126 obj.send_t = timer('Name',name,'TimerFcn',@(¬,¬)send(obj...

),'BusyMode', 'drop','ExecutionMode','fixedRate','...

Period',ts/4);

127 name = strcat(obj.name, '_parse');

128 obj.parse_t = timer('Name',name,'TimerFcn',@(¬,¬)parse(...

obj),'ExecutionMode','fixedRate','BusyMode','drop','...

Period',ts/10);

129 name = strcat(obj.name, '_p');

130 obj.p_t = timer('Name',name,'TimerFcn',@(¬,¬)parse_wia(...

obj),'ExecutionMode','singleshot');

131 name = strcat(obj.name, '_assoc');

132 obj.assoc_t = timer('Name',name,'TimerFcn',@(¬,¬)...

assoc_func(obj),'ExecutionMode','fixedRate', 'Period'...

, ts/5);

133 name = strcat(obj.name, '_rsn');

40

134 obj.rsn_t = timer('Name',name,'TimerFcn',@(¬,¬)inc_rsn(...

obj),'ExecutionMode','fixedRate', 'StartDelay',1,'...

Period', ts);

135 end

136

137 function prop = get_prop(obj, property)

138 prop = obj.(property);

139 end

140

141 function set_prop(obj, property, value)

142 obj.(property) = value;

143 end

144

145 function start(obj)

146 if obj.pan_coord

147 asn_timer();

148 beacon_timer(obj);

149 parse_timer(obj);

150 send_timer(obj);

151 elseif ¬obj.pan_coord

152 assoc_timer(obj);

153 parse_timer(obj);

154 send_timer(obj)

155 end

156 end

157 end

158 end

B.1.2 wia_rfd.m

1 % wia_rfd.m in the @wia_rfd folder

2 % This is the class definition for Reduced Funciton Device (RFD)

3

4 classdef wia_rfd < handle

5 properties

6 name;

7 my_ci;

8 wia_cmd;

41

9 pan_coord = 0;

10 pan_id;

11 pan_coord_add;

12 parent_add;

13 assoc = 0;

14 my_long_address;

15 my_short_address = 'ffff';

16 rx;

17 tx;

18 bcn_payload;

19 tx_frame = [];

20 rx_frame = [];

21 rec_frame=[''];

22 state=1;

23 lock = 0;

24 ack_table = [];

25 last_seq_num;

26 d_seq_num = 0;

27 cc_t;

28 rsn_t;

29 assoc_t;

30 parse_t;

31 send_t;

32 data_t

33 p_t;

34 bcn_timestamp = tic;

35 payload = strrep(num2str(ones(1,40)),' ','');

36 waiting = 0;

37 chan='';

38 n_table={{}};

39 direct = '';

40 buffer = {};

41 cluster_id;

42 asn_start = 0;

43 send_buf = {};

44 send_data_buf = {};

45 rsn = 0;

46 alloc;

47 count = 0;

48 end

42

49 methods

50 function set_name(obj,num)

51 obj.name = strcat('rfd_',num2str(num));

52 end

53

54 function struct_init(obj)

55 load('wia_structs.mat');

56 obj.rx = struct('fcf', fcf, 'sf', superframe, 'p', p, 'ci...

', ci, 'payload', []);

57 obj.tx = struct('fcf', fcf, 'sf', superframe, 'p', p, 'ci...

', ci, 'payload', []);

58 obj.wia_cmd = wia_cmd;

59 obj.bcn_payload = bp;

60 obj.my_ci = ci;

61 clear fcf sf p ci

62 end

63

64 function set_val(obj)

65 obj.my_ci.dev_type = 1;

66 obj.my_ci.power_src = 0;

67 obj.my_ci.rec_idle = 0;

68 obj.my_ci.sec_cap = 0;

69 obj.my_ci.allocate_add = 1;

70 end

71

72 function rsn = get_rsn(obj)

73 rsn = obj.rsn;

74 end

75

76 function initialize(obj)

77 global ts

78 struct_init(obj);

79 set_val(obj);

80 name = strcat(obj.name, '_send');

81 obj.send_t = timer('Name',name,'TimerFcn',@(¬,¬)send(obj)...

,'BusyMode', 'drop','ExecutionMode','fixedRate','...

Period',ts/4);

82 name = strcat(obj.name, '_parse');

83 obj.parse_t = timer('Name',name,'TimerFcn',@(¬,¬)parse(...

obj),'ExecutionMode','fixedRate','BusyMode','drop','...

43

Period',ts/4);

84 name = strcat(obj.name, '_p');

85 obj.p_t = timer('Name',name,'TimerFcn',@(¬,¬)parse_wia(...

obj),'ExecutionMode','singleshot');

86 name = strcat(obj.name, '_data');

87 %obj.data_t = timer('Name',name,'TimerFcn',@(¬,¬)...

send_data(obj),'ExecutionMode','fixedRate','StartDelay...

',15*ts,'BusyMode','drop','Period',32*ts);

88 obj.data_t = timer('Name',name,'TimerFcn',@(¬,¬)send_data...

(obj),'ExecutionMode','fixedRate','BusyMode','drop','...

Period',1);

89 name = strcat(obj.name, '_assoc');

90 obj.assoc_t = timer('Name',name,'TimerFcn',@(¬,¬)...

assoc_func(obj),'ExecutionMode','fixedRate', 'Period',...

ts/10);

91 name = strcat(obj.name, '_rsn');

92 obj.rsn_t = timer('Name',name,'TimerFcn',@(¬,¬)inc_rsn(...

obj),'ExecutionMode','fixedRate', 'StartDelay',1,'...

TasksToExecute', 32, 'Period', ts);

93 end

94

95 function prop = get_prop(obj, property)

96 prop = obj.(property);

97 end

98

99 function set_prop(obj, property, value)

100 obj.(property) = value;

101 end

102

103 function set_long_add(obj, add)

104 obj.my_long_address = strcat('ffffffff', dec2hex(add,8)...

);

105 end

106

107 function start(obj)

108 assoc_timer(obj);

109 parse_timer(obj);

110 send_timer(obj);

111 data_timer(obj);

112 end

44

113 end

114 end

B.2 Functions

B.2.1 asn_timer.m

1 % asn_timer.m

2 % This function starts the time that controls the incrementing of ...

the

3 % absolute slot number (ASN) for the network. It can take in a ...

value to

4 % initialize the ASN based on the ASN obtained from a beacon.

5

6 function asn_timer()

7 try

8 asn_t = timer('Name','asn','TimerFcn',@(¬,¬)inc_asn(),'...

BusyMode', 'queue','StartDelay',1,'ExecutionMode','...

fixedRate','Period',1);

9 start(asn_t);

10 catch e

11 fprintf('Caught exception: %s\n', e.message);

12 end

13 end

B.2.2 assoc_func.m

1 % assoc_func.m

2 % This function is called by the assoc timer

3

4 function assoc_func(obj)

5 if obj.my_ci.dev_type == 0

6 if obj.pan_coord

7 return

8

9 elseif obj.assoc

45

10 stop(obj.assoc_t);

11 beacon_timer(obj);

12 else

13 obj.i = obj.i + 1;

14 pause(.05); % a slight pause to let all the data ...

gather

15 if obj.i > 1000

16 obj.set_pan_coord;

17 obj.set_pan_id(hex2dec('dcba'));

18 asn_timer(obj);

19 obj.assoc = 1;

20 end

21 end

22

23 elseif obj.my_ci.dev_type == 1

24 if obj.assoc

25 stop(obj.assoc_t);

26 data_timer = timer('Name','client-data','TimerFcn',@(...

¬,¬)send_data(obj),'ExecutionMode','fixedRate','...

Period',15);

27 end

28 end

29 end

B.2.3 assoc_timer.m

1 % assoc_timer.m

2 % This timer checks the status of device association.

3

4 function assoc_timer(obj)

5 try

6 start(obj.assoc_t);

7 catch e

8 fprintf('Caught exception: %s\n', e.message);

9 end

10 end

46

B.2.4 bcn_parse_wia.m

1 % bcn_parse_wia.m

2 % This function parses the payload of a beacon frame.

3

4 function bcn_parse_wia(obj)

5 obj.bcn_payload.cluster_id = bin2dec(obj.rx.payload(1:8));

6 obj.bcn_payload.asn = bin2dec(obj.rx.payload(9:56));

7 obj.bcn_payload.time_val = bin2dec(obj.rx.payload(57:72));

8 obj.bcn_payload.next_bcn_chan = bin2dec(obj.rx.payload(73:80))...

;

9 end

B.2.5 beacon.m

1 % beacon.m

2 % This function is called by the beacon timer

3

4 function beacon(obj)

5 obj.bcn_timestamp = tic;

6 obj.tx.fcf.frame_type = 0;

7 transmit(obj);

8 end

B.2.6 beacon_timer.m

1 % beacon_timer.m

2 % This timer sets the frequency at which beacons are transmitted ...

by a

3 % networking device.

4

5 function beacon_timer(obj)

6 try

7 start(obj.beacon_t);

8 catch e

9 fprintf('Caught exception: %s\n', e.message);

47

10 end

11 end

B.2.7 cc_timer.m

1 % cc_timer.m

2 % This timer sets the frequency at which clear channel assessments...

(CCA) are

3 % made.

4

5 function cc_timer(obj)

6 try

7 start(obj.cc_t);

8 catch e

9 fprintf('Caught exception: %s\n', e.message);

10 end

11 end

B.2.8 channel.m

1 %channel.m

2 % This function simulates transmitted data through a channel. ...

Currently it

3 % is noiseless. The signal is placed in neighbor channels after a ...

delay to

4 % simulate transmit time.

5

6 function channel(obj,tx_sig)

7 delay = 100*length(tx_sig)/250000; % using increasing time by ...

2 orders of magnitude for simulations

8 pause(delay)

9 for a=1:length(obj.n_table)

10 obj.n_table{a}.chan=tx_sig;

11 buffer = obj.n_table{a}.get_prop('buffer');

12 buffer{numel(buffer)+1} = tx_sig;

13 obj.n_table{a}.chan='';

48

14 obj.n_table{a}.set_prop('buffer', buffer);

15 end

16 end

B.2.9 channel_check.m

1 % channel_check.m

2 % This function collects the data when the channel is no longer ...

clear.

3

4 function channel_check(obj)

5 if ¬isempty(obj.chan)

6 if isempty(obj.buffer)

7 obj.buffer{1} = obj.chan;

8 obj.chan = '';

9 elseif ¬strcmp(obj.buffer{numel(obj.buffer)}, obj.chan)

10 obj.buffer{numel(obj.buffer)+1} = obj.chan;

11 obj.chan = '';

12 end

13 end

14 end

B.2.10 check_assoc.m

1 % check_assoc.m

2 % This channel checks the association of the device and parses ...

pertinent

3 % information.

4

5 function check_assoc(obj)

6 global t

7 cmd_parse_802154(obj);

8 if ¬strcmp(obj.my_short_address,'ffff')

9 obj.pan_id = obj.rx.p.src_pan_id;

10 obj.pan_coord_add = obj.rx.p.src_add;

11 obj.parent_add = obj.pan_coord_add;

49

12 obj.tx.fcf.src_mode = 2;

13 text = strcat(obj.name, '_associated');

14 disp(text)

15 end

16 end

B.2.11 cmd_parse_802154.m

1 % cmd_parse_802154.m

2 % This function parses the payload of a IEEE 802.15.4 command ...

frame.

3

4 function cmd_parse_802154(obj)

5 switch obj.rx.p.cmd_type

6 case 1

7 obj.rx.ci.dev_type = bin2dec(obj.rx.payload(2));

8 obj.rx.ci.power_src = bin2dec(obj.rx.payload(3));

9 obj.rx.ci.rec_idle = bin2dec(obj.rx.payload(4));

10 obj.rx.ci.sec_cap = bin2dec(obj.rx.payload(7));

11 obj.rx.ci.allocate_add = bin2dec(obj.rx.payload(8));

12 case 2

13 % Association response 24 bits

14 if obj.assoc

15 obj.tx.payload = obj.rx.payload;

16 else

17 obj.my_short_address = hex_conv(obj.rx.payload...

(1:16),2);

18 obj.cluster_id = hex_conv(obj.rx.payload(1:8),2);

19 obj.assoc = bin2dec(obj.rx.payload(17:24))+1;

20 end

21

22 case 3

23 % Disassociation reason 8 bits

24 dis_reas = bin2dec(obj.rx.payload);

25

26 case 5

27 % Time Synchronization

28 pan_id = obj.rx.payload(1:16);

50

29 coord_add = obj.rx.payload(17:32);

30 chan_num = obj.rx.payload(33:40);

31 short_add = obj.rx.payload(41:56);

32 chan_page = obj.rx.payload(57:64);

33

34 otherwise

35

36 end

37 end

B.2.12 create_wia_frame.m

1 % create_wia_frame.m

2 % This function creates the MAC layer frame for IEEE 802.15.4.

3

4 function frame = create_wia_frame(obj)

5 global t

6

7 switch obj.tx.fcf.frame_type

8 case 0

9 frame = beacon_frame(obj);

10

11 case 1

12 frame = data_frame(obj, obj.tx.payload);

13

14 case 2

15 frame = ack_frame(obj);

16

17 case 3

18 frame = cmd_frame(obj);

19

20 otherwise

21 disp('error')

22 end

23 end

24

25 %% Beacon Frame

26 function frame = beacon_frame(obj)

51

27 global asn

28 if isempty(obj.send_buf)

29 obj.tx.fcf.frame_pend = 0;

30 obj.tx.p.pend_add = dec2bin(0,8);

31 else

32

33 obj.tx.fcf.frame_pend = 1;

34 temp_short = '';

35 temp_long = '';

36 i = 0;

37 j = 0;

38 for a = 1:numel(obj.pend_add)

39 if length(obj.pend_add{a}) == 4

40 i = i+1;

41 temp_short = strcat(temp_short,hex_conv(...

obj.pend_add{a},1));

42 elseif length(obj.pend_add{a}) == 16

43 j = j+1;

44 temp_long = strcat(temp_long,hex_conv(obj.pend_add...

{a},1));

45 end

46 end

47 obj.tx.p.pend_add = strcat(dec2bin(i,3), '0', dec2bin(j,3)...

, '0', temp_short, temp_long);

48

49 end

50

51 fcf = strcat(dec2bin(obj.tx.fcf.frame_type,3), dec2bin(0,1), ...

dec2bin(obj.tx.fcf.frame_pend,1) ...

52 , dec2bin(0,1), dec2bin(1,1), dec2bin(0,3) ...

...

53 , dec2bin(0,2), dec2bin(obj.tx.fcf.version,2)...

, dec2bin(obj.tx.fcf.src_mode,2));

54

55 src_pan_id = dec2bin(obj.pan_id,16);

56 src_add = hex_conv(obj.my_short_address,1);

57 add_info = strcat(src_pan_id, src_add);

58

59 superframe_spec = strcat(dec2bin(obj.tx.sf.BO,4), dec2bin(...

obj.tx.sf.SO,4), dec2bin(obj.tx.sf.finCapslot,4) ...

52

60 , dec2bin(0,1), dec2bin(0,1), dec2bin(...

obj.pan_coord,1) ...

61 , dec2bin(obj.tx.sf.assoc_permit,1));

62

63 payload = strcat(dec2bin(obj.bcn_payload.cluster_id,8), ...

dec2bin(asn,48), dec2bin(obj.bcn_payload.time_val,16), ...

dec2bin(obj.bcn_payload.next_bcn_chan,8));

64

65 frame = strcat(fcf, dec2bin(obj.tx.p.b_seq_num,8), add_info, ...

superframe_spec ...

66 , dec2bin(0,8), obj.tx.p.pend_add , payload);

67

68 obj.tx.p.b_seq_num = inc_seq_num(obj.tx.p.b_seq_num);

69

70 end

71

72 %% Data Frame

73 function frame = data_frame(obj,payload)

74 obj.tx.fcf.dest_mode = 2;

75 obj.tx.fcf.src_mode = 2;

76 obj.tx.p.src_add = obj.my_short_address;

77

78 dest_pan_id = dec2bin(obj.tx.p.dest_pan_id,16);

79 dest_add = hex_conv(obj.tx.p.dest_add,1);

80 src_add = hex_conv(obj.tx.p.src_add,1);

81 add_info = strcat(dest_pan_id, dest_add, src_add);

82

83 fcf = frame_ctrl(obj);

84

85 frame = strcat(fcf, dec2bin(obj.tx.p.d_seq_num,8), add_info, ...

payload);

86

87 obj.tx.p.d_seq_num = inc_seq_num(obj.tx.p.d_seq_num);

88

89 end

90

91 %% Ack Frame

92 function frame = ack_frame(obj)

93

94 fcf = frame_ctrl(obj);

53

95

96 frame = strcat(fcf, dec2bin(obj.rx.p.d_seq_num,8));

97

98 end

99

100 %% Cmd Frame

101 function frame = cmd_frame(obj)

102 % cmd = struct('assoc_req' , 1 ...

103 % , 'assoc_res' , 2 ...

104 % , 'disassoc' , 3 ...

105 % , 'data_req' , 4);

106

107 switch obj.tx.p.cmd_type

108 case 1 % association request

109 if obj.assoc

110 dest_pan_id = dec2bin(obj.tx.p.dest_pan_id,16);

111 if obj.pan_coord_add

112 dest_add = hex_conv(obj.pan_coord_add,1);

113 else

114 dest_add = hex_conv(obj.parent_add,1);

115 end

116 src_add = hex_conv(obj.tx.p.src_add,1);

117 add_info = strcat(dest_pan_id, dest_add, src_add);

118

119 payload = strcat(dec2bin(0,1) , dec2bin(...

obj.tx.ci.dev_type,1) , dec2bin(...

obj.tx.ci.power_src,1) , dec2bin(...

obj.tx.ci.rec_idle,1) ...

120 , dec2bin(0,2) , dec2bin(obj.tx.ci.sec_cap,1) ...

, dec2bin(obj.tx.ci.allocate_add,1));

121 else

122 obj.tx.fcf.ack_req = 1;

123 obj.tx.fcf.dest_mode = 2;

124 obj.tx.fcf.src_mode = 3;

125 obj.tx.p.dest_pan_id = obj.pan_id;

126 if obj.pan_coord_add

127 obj.tx.p.dest_add = obj.pan_coord_add;

128 else

129 obj.tx.p.dest_add = obj.rx.p.src_add;

130 end

54

131 obj.tx.p.src_add = obj.my_long_address;

132 dest_pan_id = dec2bin(obj.tx.p.dest_pan_id,16);

133 dest_add = hex_conv(obj.tx.p.dest_add,1);

134 src_add = hex_conv(obj.tx.p.src_add,1);

135 add_info = strcat(dest_pan_id, dest_add, src_add);

136

137 payload = strcat(dec2bin(0,1) , dec2bin(...

obj.tx.ci.dev_type,1) , dec2bin(...

obj.tx.ci.power_src,1) , dec2bin(...

obj.tx.ci.rec_idle,1) ...

138 , dec2bin(0,2) , dec2bin(obj.tx.ci.sec_cap,1) ...

, dec2bin(obj.tx.ci.allocate_add,1));

139 end

140

141 case 2 % association response

142 if length(obj.rx.p.src_add) == 16

143 obj.tx.fcf.dest_mode = 3;

144 else

145 obj.tx.fcf.dest_mode = 2;

146 end

147 dest_pan_id = dec2bin(obj.tx.p.dest_pan_id,16);

148 dest_add = hex_conv(obj.rx.p.src_add,1);

149 src_add = hex_conv(obj.my_short_address,1);

150 add_info = strcat(dest_pan_id, dest_add, src_add);

151 if obj.pan_coord

152 address = new_add(obj);

153 payload = strcat(hex_conv(address,1) , dec2bin...

(0,8));

154 else

155 payload = obj.tx.payload;

156 end

157

158 case 3 % dissassociate

159

160 case 4 % data request

161 obj.tx.fcf.frame_pend = 0;

162 dest_pan_id = dec2bin(obj.tx.p.dest_pan_id,16);

163 dest_add = hex_conv(obj.rx.p.src_add,1);

164 if obj.assoc

165 obj.tx.fcf.src_mode = 2;

55

166 src_add = hex_conv(obj.my_short_address,1);

167 else

168 obj.tx.fcf.src_mdoe = 3;

169 src_add = hex_conv(obj.my_long_address,1);

170 end

171 add_info = strcat(dest_pan_id, dest_add, src_add);

172 payload = '';

173

174 end

175

176 fcf = frame_ctrl(obj);

177

178 frame = strcat(fcf, dec2bin(obj.tx.p.d_seq_num,8), add_info, ...

dec2bin(obj.tx.p.cmd_type,8), payload);

179

180 obj.tx.p.d_seq_num = inc_seq_num(obj.tx.p.d_seq_num);

181

182 end

183

184 %% Frame Control Field

185 function fcf = frame_ctrl(obj)

186

187 fcf = strcat(dec2bin(obj.tx.fcf.frame_type,3), dec2bin(0,1), ...

dec2bin(obj.tx.fcf.frame_pend,1) ...

188 , dec2bin(obj.tx.fcf.ack_req,1), dec2bin(...

obj.tx.fcf.pan_comp,1), dec2bin(0,3) ...

189 , dec2bin(obj.tx.fcf.dest_mode,2), dec2bin(...

obj.tx.fcf.version,2), dec2bin(...

obj.tx.fcf.src_mode,2));

190 end

B.2.13 data_timer.m

1 % data_timer.m

2 % This function starts the time that controls the incrementing of ...

the

3 % relative slot number (RSN) for the network.

4

56

5 function data_timer(obj)

6 try

7 start(obj.data_t);

8 catch e

9 fprintf('Caught exception: %s\n', e.message);

10 end

11 end

B.2.14 get_asn.m

1 % get_asn.m

2 % Function to retrieve the value of asn

3

4 function r = get_asn()

5 global asn

6 r = asn;

7 end

B.2.15 hex_conv.m

1 % hex_conv.m

2 % This function converts bits to hex and hex to bits. Makes data ...

more

3 % readable. Currently required for storing and parsing of data.

4

5 function output = hex_conv(input, type)

6 switch type

7 case 1

8 output = hex2bin(input);

9 case 2

10 output = bin2hex(input);

11 end

12 end

13

14 function bin = hex2bin(input)

15 bin = '';

57

16 for a=1:length(input)

17 bin = strcat(bin,dec2bin(hex2dec(input(a)),4));

18 end

19 end

20

21 function hex = bin2hex(input)

22 hex = '';

23 for a=1:4:length(input)

24 hex = strcat(hex, dec2hex(bin2dec(input(a:a+3)),1));

25 end

26 hex = lower(hex);

27 end

B.2.16 inc_asn.m

1 % inc_asn.m

2 % This function increments the absolute slot number;

3

4 function inc_asn

5 global asn

6 global t_asn

7 t_asn = tic;

8 asn = asn+1;

9 if ¬(asn ≤ hex2dec('ffffffffffff'))

10 asn = 0;

11 end

12 end

B.2.17 inc_seq_num.m

1 % inc_seq_num.m

2 % This function increments the sequence number of the MAC layer ...

frames.

3

4 function new_seq_num = inc_seq_num(seq_num)

5 new_seq_num = seq_num + 1;

58

6 if ¬(new_seq_num ≤ 255)

7 new_seq_num = 0;

8 end

9 end

B.2.18 new_add.m

1 % new_add.m

2 % This function produces 16 bit short addresses during the joining...

process

3 % for requesting devices.

4

5 function next_add = new_add(obj)

6 if length(obj.rx.p.src_add) == 16

7 if obj.rx.ci.dev_type == 0 %ffd

8 cluster_id = hex2dec(obj.next_rt_address);

9 obj.next_leaf_address{cluster_id+1} = {0};

10 next_add = strcat(dec2hex(cluster_id,2),dec2hex(...

obj.next_leaf_address{cluster_id+1}{1},2));

11 obj.next_rt_address = dec2hex(hex2dec(...

obj.next_rt_address)+1);

12 elseif obj.rx.ci.dev_type == 1 % rfd

13 next_add = strcat(obj.cluster_id, dec2hex(numel(...

obj.next_leaf_address{1}),2));

14 obj.next_leaf_address{1}{hex2dec(next_add)+1} = numel(...

obj.next_leaf_address{1});

15 end

16 elseif length(obj.rx.p.src_add) == 4

17 cluster_id = obj.rx.p.src_add(1:2);

18 ind_c = hex2dec(cluster_id);

19 next_add = strcat(cluster_id, dec2hex(numel(...

obj.next_leaf_address{ind_c+1}),2));

20 ind_l = hex2dec(next_add(3:4));

21 obj.next_leaf_address{ind_c+1}{ind_l+1} = numel(...

obj.next_leaf_address{ind_c+1});

22 end

23 end

59

B.2.19 parse.m

1 % parse.m

2 % This function is called by the parse timer

3

4 function parse(obj)

5 if ¬isempty(obj.buffer)

6 obj.rec_frame = obj.buffer{1};

7 obj.buffer(1) = [];

8 parse_wia(obj);

9 end

10 end

B.2.20 parse_timer.m

1 % parse_timer.m

2 % This timer sets the frequency at which received data is parsed ...

by the

3 % device.

4

5 function parse_timer(obj)

6 try

7 name = strcat(obj.name, '_parse');

8 start(obj.parse_t)

9 catch e

10 fprintf('Caught exception: %s\n', e.message);

11 end

12 end

B.2.21 parse_wia.m

1 % parse_wia.m

2 % This function parses the IEEE 802.15.4 MAC layer. All higher ...

level data

3 % will be in the payload when parsing is complete.

4

60

5 function parse_wia(obj)

6 data = obj.rec_frame;

7 obj.rec_frame = '';

8 SHR = data(1:40);

9 PHR = bin2dec(data(41:47));

10 data = data(49:end);

11 err = 0;

12

13 if (err , 0)

14 sprintf('FCS Failed!\n')

15 return

16 else

17 last_bit = length(data);

18

19 obj.rx.fcf.frame_type = bin2dec(data(1:3));

20 obj.rx.fcf.sec = bin2dec(data(4)); % constant value

21 obj.rx.fcf.frame_pend = bin2dec(data(5));

22 obj.rx.fcf.ack_req = bin2dec(data(6));

23 obj.rx.fcf.pan_comp = bin2dec(data(7)); % constant value

24 obj.rx.fcf.dest_mode = bin2dec(data(11:12));

25 obj.rx.fcf.version = bin2dec(data(13:14));

26 obj.rx.fcf.src_mode = bin2dec(data(15:16));

27 if obj.rx.fcf.frame_type == 0

28 obj.rx.p.b_seq_num = bin2dec(data(17:24));

29 else

30 obj.rx.p.d_seq_num = bin2dec(data(17:24));

31 end

32

33 switch obj.rx.fcf.frame_type

34

35 case 0 % beacon frame

36 obj.rx.p.src_pan_id = bin2dec(data(25:40));

37 if obj.rx.fcf.src_mode == 2 % 16 bit address

38 obj.rx.p.src_add = hex_conv(data(41:56),2);

39 obj.rx.sf.BO = bin2dec(data(57:60));

40 obj.rx.sf.SO = bin2dec(data(61:64));

41 obj.rx.sf.finCapslot = bin2dec(data(65:68));

42 obj.rx.sf.BLE = bin2dec(data(69)); % constant ...

value

43 obj.rx.sf.pan_coord = bin2dec(data(71));

61

44 obj.rx.sf.assoc_permit = bin2dec(data(72));

45 obj.rx.p.gts = bin2dec(data(73:80));

46 obj.rx.p.pend_add = bin2dec(data(81:88));

47 obj.rx.payload = data(89:last_bit);

48 elseif obj.rx.fcf.src_mode == 3 % 64 bit address

49 obj.rx.p.src_add = hex_conv(data(41:104),2);

50 obj.rx.sf.BO = bin2dec(data(105:108));

51 obj.rx.sf.SO = bin2dec(data(109:112));

52 obj.rx.sf.finCapslot = bin2dec(data(113:116));

53 obj.rx.sf.BLE = bin2dec(data(117)); % constant...

value

54 obj.rx.sf.pan_coord = bin2dec(data(118));

55 obj.rx.sf.assoc_permit = bin2dec(data(119));

56 obj.rx.p.gts = data(120:128);

57 obj.rx.p.pend_add = data(129:136);

58 obj.rx.payload = data(136:last_bit);

59 obj.rx.payload

60 end

61

62 case 1 % data frame

63 if obj.rx.fcf.dest_mode == 2 % 16 bit dest address

64 obj.rx.p.dest_pan_id = bin2dec(data(25:40));

65 obj.rx.p.dest_add = hex_conv(data(41:56),2);

66 if obj.rx.fcf.src_mode == 2% 16 bit src ...

address

67 obj.rx.p.src_add = hex_conv(data(57:72),2)...

;

68 obj.rx.payload = data(73:last_bit);

69 elseif obj.rx.fcf.src_mode == 3 % 64 bit src ...

address

70 obj.rx.p.src_add = hex_conv(data(57:120)...

,2);

71 obj.rx.payload = data(121:last_bit);

72 elseif obj.rx.fcf.src_mode == 0 % no src ...

address

73 obj.rx.payload = data(57:last_bit);

74 end

75 elseif obj.rx.fcf.dest_mode == 3 % 64 bit dest ...

address

76 obj.rx.p.dest_pan_id = bin2dec(data(25:40));

62

77 obj.rx.p.dest_add = hex_conv(data(41:104),2);

78 if obj.rx.fcf.src_mode == 2 % 16 bit src ...

address

79 obj.rx.p.src_add = hex_conv(data(105:120)...

,2);

80 obj.rx.payload = data(121:last_bit);

81 elseif obj.rx.fcf.src_mode == 3 % 64 bit src ...

address

82 obj.rx.p.src_add = hex_conv(data(105:168)...

,2);

83 obj.rx.payload = data(169:last_bit);

84 elseif obj.rx.fcf.src_mode == 0 % no src ...

address

85 obj.rx.payload = data(105:last_bit);

86 end

87 elseif obj.rx.fcf.dest_mode == 0 % no dest address

88 if obj.rx.fcf.src_mode == 2 % 16 bit src ...

address

89 obj.rx.p.src_pan_id = bin2dec(data(25:40))...

;

90 obj.rx.p.src_add = hex_conv(data(41:56),2)...

;

91 obj.rx.payload = data(57:last_bit);

92 elseif obj.rx.fcf.src_mode == 3 % 64 bit src ...

address

93 obj.rx.p.src_pan_id = bin2dec(data(25:40))...

;

94 obj.rx.p.src_add = hex_conv(data(41:104)...

,2);

95 obj.rx.payload = data(105:last_bit);

96 elseif obj.rx.fcf.src_mode == 0 % no src ...

address

97 obj.rx.payload = data(25:last_bit);

98 end

99 end

100

101 case 2 % ack frame

102

103 case 3 % cmd frame

104 if obj.rx.fcf.dest_mode == 2 % 16 bit dest address

63

105 obj.rx.p.dest_pan_id = bin2dec(data(25:40));

106 obj.rx.p.dest_add = hex_conv(data(41:56),2);

107 if obj.rx.fcf.src_mode == 2 % 16 bit src ...

address

108 obj.rx.p.src_add = hex_conv(data(57:72),2)...

;

109 obj.rx.p.cmd_type = bin2dec(data(73:80));

110 if ¬any([4,6,7] == obj.rx.p.cmd_type)

111 obj.rx.payload = data(81:last_bit);

112 end

113 elseif obj.rx.fcf.src_mode == 3 % 64 bit src ...

address

114 obj.rx.p.src_add = hex_conv(data(57:120)...

,2);

115 obj.rx.p.cmd_type = bin2dec(data(121:128))...

;

116 if ¬any([4,6,7] == obj.rx.p.cmd_type)

117 obj.rx.payload = data(129:last_bit);

118 end

119 elseif obj.rx.fcf.src_mode == 0 % no src ...

address

120 obj.rx.p.cmd_type = bin2dec(data(57:64));

121 if ¬any([4,6,7] == obj.rx.p.cmd_type)

122 obj.rx.payload = data(65:last_bit);

123 end

124 end

125 elseif obj.rx.fcf.dest_mode == 3 % 64 bit dest ...

address

126 obj.rx.p.dest_pan_id = bin2dec(data(25:40));

127 obj.rx.p.dest_add = hex_conv(data(41:104),2);

128 if obj.rx.fcf.src_mode == 2 % 16 bit src ...

address

129 obj.rx.p.src_add = hex_conv(data(105:120)...

,2);

130 obj.rx.p.cmd_type = bin2dec(data(121:128))...

;

131 if ¬any([4,6,7] == obj.rx.p.cmd_type)

132 obj.rx.payload = data(129:last_bit);

133 end

64

134 elseif obj.rx.fcf.src_mode == 3 %64 bit src ...

address

135 obj.rx.p.src_add = hex_conv(data(105:168)...

,2);

136 obj.rx.p.cmd_type = bin2dec(data(169:176))...

;

137 if ¬any([4,6,7] == obj.rx.p.cmd_type)

138 obj.rx.payload = data(177:last_bit);

139 end

140 elseif obj.rx.fcf.src_mode == 0 % no src ...

address

141 obj.rx.p.cmd_type = bin2dec(data(105:112))...

;

142 if ¬any([4,6,7] == obj.rx.p.cmd_type)

143 obj.rx.payload = data(113:last_bit);

144 end

145 end

146 elseif obj.rx.fcf.dest_mode == 0 % no dest address

147 if obj.rx.fcf.src_mode == 2 % 16 bit src ...

address

148 obj.rx.p.src_pan_id = bin2dec(data(25:40))...

;

149 obj.rx.p.src_add = hex_conv(data(41:56),2)...

;

150 obj.rx.p.cmd_type = bin2dec(data(57:64));

151 if ¬any([4,6,7] == obj.rx.p.cmd_type)

152 obj.rx.payload = data(65:last_bit);

153 end

154 elseif obj.rx.fcf.src_mode == 3 % 64 bit src ...

address

155 obj.rx.p.src_pan_id = bin2dec(data(25:40))...

;

156 obj.rx.p.src_add = hex_conv(data(41:104)...

,2);

157 obj.rx.p.cmd_type = bin2dec(data(105:112))...

;

158 if ¬any([4,6,7] == obj.rx.p.cmd_type)

159 obj.rx.payload = data(113:last_bit);

160 end

65

161 elseif obj.rx.fcf.src_mode == 0 % no src ...

address

162 obj.rx.p.cmd_type = bin2dec(data(25:32));

163 if ¬any([4,6,7] == obj.rx.p.cmd_type)

164 obj.rx.payload = data(33:last_bit);

165 end

166 end

167 end

168

169 otherwise

170 disp('Illegal Frame_Type')

171 return

172 end

173

174 if any(strcmp(obj.rx.p.src_add, {obj.my_short_address, ...

obj.my_long_address}))

175 return

176 elseif obj.rx.fcf.frame_type == 0 && ¬obj.pan_coord

177 parsed(obj)

178 return

179 elseif any(strcmp(obj.rx.p.dest_add, {obj.my_short_address...

, obj.my_long_address, 'ffff'}))

180 parsed(obj)

181 return

182 end

183 end

184 end

B.2.22 parsed.m

1 % parsed.m

2 % This function determines device responses and actions to ...

received data.

3

4 function parsed(obj)

5 global time_delay

6 if obj.pan_coord

66

7 if (obj.rx.fcf.ack_req == 1) && (¬any([0,2] == ...

obj.rx.fcf.frame_type)) && ¬any(obj.rx.p.d_seq_num == ...

obj.ack_table)

8 obj.last_seq_num = obj.rx.p.d_seq_num;

9 obj.tx.fcf.frame_type = 2;

10 transmit(obj);

11 end

12 if (obj.rx.fcf.frame_type == 1)

13 for a=1:numel(time_delay)

14 if strcmp(obj.rx.payload, time_delay{a}{1})

15 time_delay{a}{3} = toc(time_delay{a}{2});

16 disp(time_delay{a}{3})

17 end

18 end

19 end

20 if (obj.rx.fcf.frame_type == 3)

21 if (obj.rx.p.cmd_type == 1)

22 cmd_parse_802154(obj);

23 obj.tx.ci.dev_type = obj.rx.ci.dev_type;

24 obj.tx.fcf.frame_type = 3;

25 obj.tx.p.cmd_type = 2;

26 tx = obj.tx;

27 obj.pend_add{numel(obj.pend_add)+1} = ...

obj.rx.p.src_add;

28 obj.send_buf{numel(obj.send_buf)+1} = {...

obj.rx.p.src_add,tx};

29 elseif (obj.rx.p.cmd_type == 4)

30 if ¬isempty(obj.send_buf)

31 if any(strcmp(obj.rx.p.src_add, obj.pend_add))

32 for a=1:numel(obj.send_buf)

33 if any(strcmp(obj.rx.p.src_add, ...

obj.send_buf{a}{1}))

34 obj.tx = obj.send_buf{strcmp(...

obj.rx.p.src_add, obj.send_buf{a...

}{1})}{2};

35 obj.send_buf(strcmp(...

obj.rx.p.src_add, obj.send_buf{a...

}{1})) = [];

36 obj.rx.ci.dev_type = ...

obj.tx.ci.dev_type;

67

37 obj.pend_add(strcmp(...

obj.rx.p.src_add, obj.pend_add{a...

})) = [];

38 transmit(obj);

39 break;

40 end

41 end

42 else

43 obj.tx.fcf.frame_type = 1;

44 obj.tx.p.dest_add = obj.tx.p.src_add;

45 obj.tx.payload = '';

46 transmit(obj);

47 end

48 end

49 end

50 end

51 elseif ¬obj.pan_coord

52 if (obj.rx.fcf.ack_req == 1) && (¬any([0,2] == ...

obj.rx.fcf.frame_type))

53 obj.tx.fcf.frame_type = 2;

54 transmit(obj);

55 end

56 if (obj.rx.fcf.frame_type == 0)

57 obj.bcn_timestamp = tic;

58 obj.rsn = 0;

59 obj.pan_id = obj.rx.p.src_pan_id;

60 if obj.rx.sf.pan_coord == 1

61 obj.pan_coord_add = obj.rx.p.src_add;

62 end

63 if (obj.assoc == 0) && (obj.waiting == 0) && strcmp(...

obj.my_short_address, 'ffff')

64 obj.tx.fcf.frame_type = 3;

65 obj.tx.p.cmd_type = 1;

66 obj.tx.ci = obj.my_ci;

67 obj.waiting = 1;

68 transmit(obj);

69 end

70 if obj.rx.fcf.frame_pend == 1

71 if obj.rx.p.pend_add , 0

72 pend_add = dec2bin(obj.rx.p.pend_add,8);

68

73 i = bin2dec(pend_add(1:3));

74 j = bin2dec(pend_add(5:7));

75 temp = {};

76 if i , 0

77 for a = 1:i

78 temp{numel(temp)+1} = hex_conv(...

obj.rx.payload(1:16),2);

79 obj.rx.payload = obj.rx.payload(17:end...

);

80 end

81 end

82 if j , 0

83 for a = 1:j

84 temp{numel(temp)+1} = hex_conv(...

obj.rx.payload(1:64),2);

85 obj.rx.payload = obj.rx.payload(65:end...

);

86 end

87 end

88 if any(strcmp(obj.my_short_address, temp)) || ...

any(strcmp(obj.my_long_address, temp))

89 obj.tx.fcf.frame_type = 3;

90 obj.tx.p.cmd_type = 4;

91 transmit(obj);

92 end

93 end

94 end

95 bcn_parse_wia(obj);

96 elseif (obj.rx.fcf.frame_type == 1) && obj.my_ci.dev_type ...

== 0

97 %disp(obj.name)

98 obj.tx.fcf.frame_type = 1;

99 obj.tx.p.dest_add = obj.pan_coord_add;

100 obj.tx.fcf.ack_req = 0;

101 obj.tx.payload = obj.rx.payload;

102 transmit(obj);

103 elseif (obj.rx.fcf.frame_type == 3)

104 if obj.rx.p.cmd_type == 1 && obj.my_ci.dev_type == 0

105 cmd_parse_802154(obj);

69

106 obj.join_table{numel(obj.join_table)} = ...

obj.rx.p.src_add;

107 obj.tx = obj.rx;

108 obj.tx.p.src_add = obj.my_short_address;

109 obj.tx.fcf.src_mode = 2;

110 obj.waiting = 1;

111 transmit(obj);

112 elseif obj.rx.p.cmd_type == 2

113 if obj.assoc && obj.my_ci.dev_type == 0

114 cmd_parse_802154(obj);

115 obj.rx.p.src_add = obj.join_table{1};

116 obj.join_table{1} = [];

117 obj.tx = obj.rx;

118 obj.tx.fcf.dest_mode = 3;

119 obj.tx.p.src_add = obj.my_short_address;

120 tx = obj.tx;

121 obj.waiting = 0;

122 obj.pend_add{numel(obj.pend_add)+1} = ...

obj.rx.p.src_add;

123 obj.send_buf{numel(obj.send_buf)+1} = {...

obj.rx.p.src_add,tx};

124 else

125 check_assoc(obj);

126 end

127 elseif (obj.rx.p.cmd_type == 4) && obj.my_ci.dev_type ...

== 0

128 if ¬isempty(obj.send_buf)

129 for a=1:numel(obj.send_buf)

130 if (strcmp(obj.rx.p.src_add, obj.send_buf{a...

}{1}))

131 obj.tx = obj.send_buf{strcmp(...

obj.rx.p.src_add, obj.send_buf{a...

}{1})}{2};

132 transmit(obj)

133 end

134 end

135 end

136 end

137 end

138 end

70

139 end

B.2.23 send_data.m

1 % send_data.m

2 % This function sends data frame with an arbitrary payload.

3

4 function send_data(obj)

5 global asn

6 if mod(asn,32) == obj.alloc(1)-1

7 obj.tx.fcf.frame_type = 1;

8 obj.tx.fcf.ack_req = 0;

9 obj.tx.p.dest_add = strcat(obj.my_short_address(1:2),'00')...

;

10 obj.tx.payload = strcat(hex_conv(obj.my_short_address,1),...

dec2bin(obj.tx.p.d_seq_num,8),hex_conv('deadbeef',1));

11

12 transmit(obj);

13 end

14 end

B.2.24 send.m

1 % send.m

2 % This function sends data during the allocated timeslot.

3 % It is also used to measure the end-to-end-delay.

4 function send(obj)

5 global asn

6 global time_delay

7 global t_asn

8

9 if mod(asn,32) == 0

10 obj.set_prop('count',0);

11 end

12 if ¬isempty(obj.send_data_buf)

13 tx_sig = obj.send_data_buf{1};

71

14 if mod(asn,32) == obj.alloc(obj.count+1)

15 obj.count = obj.count + 1;

16 pause(1-toc(t_asn))

17 start = tic;

18 if obj.tx.fcf.frame_type == 1 && obj.my_ci.dev_type ==...

1

19 send_data(obj);

20 time_delay{numel(time_delay)+1} = {obj.tx.payload,...

start};

21 end

22 obj.send_data_buf(1)=[];

23 channel(obj, tx_sig);

24 end

25 end

26 end

B.2.25 send_timer.m

1 % send_timer.m

2 % This function starts the time that controls the incrementing of ...

the

3 % relative slot number (RSN) for the network.

4

5 function send_timer(obj)

6 try

7 start(obj.send_t);

8 catch e

9 fprintf('Caught exception: %s\n', e.message);

10 end

11 end

B.2.26 set_rec_val.m

1 % set_rec_val.m

2 % This function sets network information on the device based on a ...

received

72

3 % beacon.

4

5 function set_rec_val(obj)

6 obj.tx.sf.BO = obj.rx.sf.BO;

7 obj.tx.sf.SO = obj.rx.sf.SO;

8 obj.tx.sf.finCapslot = obj.rx.sf.finCapslot;

9 obj.tx.sf.assoc_permit = obj.rx.sf.assoc_permit;

10

11 obj.pan_id = obj.rx.p.src_pan_id;

12 obj.tx.p.dest_pan_id = obj.rx.p.src_pan_id;

13 obj.tx.p.dest_add = obj.rx.p.src_add;

14

15 if obj.assoc

16 obj.tx.fcf.src_mode = obj.rx.fcf.src_mode;

17 end

18 if (obj.rx.sf.pan_coord == 1)

19 obj.pan_coord_add = obj.rx.p.src_add;

20 end

21 end

B.2.27 slotted_csma.m

1 % slotted_csma.m

2 % This function performs slotted carrier sense multple access / ...

collision

3 % avoidance (CSMA/CA).

4

5 function status = slotted_csma(obj,frame)

6

7 %disp('entered csma')

8 NB = 0;

9 CW = 2;

10 bit_rate = 250000; %max bit_rate

11 maxMacCSMABackoffs = 4; %default value

12 macMaxBE = 5;

13 macMinBE = 3;

14

15 t_backoff = .032;%(20*4)/bit_rate; %symbols

73

16 t_superframe_slot = 1; %(3*t_backoff)*2^obj.tx.sf.SO;

17 N_backoff = 3*2^obj.tx.sf.SO;

18

19 BE = macMinBE;

20

21 while(NB < maxMacCSMABackoffs)

22 t_elapsed = toc(obj.bcn_timestamp);

23 backoff_boundary = (ceil(t_elapsed/t_backoff));

24 next_boundary = (backoff_boundary+randi([0,2^BE-1]));

25 pause(next_boundary*t_backoff)

26 disp(obj.chan)

27 while isempty(obj.chan)

28 CW = CW - 1;

29 next_boundary = next_boundary + 1;

30 if CW == 0

31 channel(obj,frame);

32 status = 1;

33 return

34 end

35 end

36 CW = 2;

37 NB = NB + 1;

38 BE = min(BE+1, macMaxBE);

39 end

40 sprintf('Failure!\n')

41 status = 0;

42 return

43 end

B.2.28 transmit.m

1 % transmit.m

2 % This function transmits the data during the proper timeslot ...

based on

3 % which timeframe of the superframe it is in.

4

5 function transmit(obj)

6 global time_delay

74

7 global asn

8 type = {'beacon', 'data' ...

9 , 'ack', 'cmd'};

10 name = strcat(obj.name,'_',type{obj.tx.fcf.frame_type+1});

11 disp(name) % display

12 frame = create_wia_frame(obj);

13 preamble = '00000000000000000000000000000000';

14 SFD = '11100101';

15 SHR = strcat(preamble, SFD);

16 if length(frame) < 128*8

17 PHR = strcat(dec2bin(ceil(length(frame)/8),7),'0');

18 else

19 disp('frame is too long')

20 end

21

22 tx_sig = strcat(SHR, PHR, frame);

23 obj.tx_frame = tx_sig;

24 if any([1,3] == obj.tx.fcf.frame_type)

25 obj.ack_table(numel(obj.ack_table)+1) = obj.tx.p.d_seq_num;

26 end

27 if any(obj.tx.fcf.frame_type == [0,2])

28 channel(obj,tx_sig)

29 elseif any(obj.tx.fcf.frame_type == 3)

30 status = slotted_csma(obj, tx_sig);

31 if status

32 for a=1:numel(obj.send_buf)

33 obj.send_buf(strcmp(obj.rx.p.src_add, ...

obj.send_buf{a}{1})) = [];

34 end

35 end

36 elseif (obj.tx.fcf.frame_type == 1)

37 send_data_buf = obj.get_prop('send_data_buf');

38 send_data_buf{numel(send_data_buf)+1} = tx_sig;

39 obj.set_prop('send_data_buf',send_data_buf);

40 end

41 end

B.2.29 wia_structs.m

75

1 % wia_structs.m

2 % These are structs to hold data for the network and makes for ...

simpler

3 % device initialization.

4

5 superframe = struct('BO' , 0 ...

6 , 'SO' , 0 ...

7 , 'finCapslot' , 0 ...

8 , 'BLE' , 0 ...

9 , 'pan_coord' , 0 ...

10 , 'assoc_permit' , 1);

11

12 fcf = struct('frame_type' , 0 ...

13 , 'sec' , 0 ...

14 , 'frame_pend' , 0 ...

15 , 'ack_req' , 0 ...

16 , 'pan_comp' , 1 ...

17 , 'dest_mode' , 0 ...

18 , 'version' , 3 ...

19 , 'src_mode' , 0);

20

21 p = struct('pend_add' , 0 ...

22 , 'd_seq_num' , 0 ...

23 , 'b_seq_num' , 0 ...

24 , 'src_pan_id' , 0 ...

25 , 'dest_pan_id' , 0 ...

26 , 'dest_add' , 0 ...

27 , 'src_add' , 0 ...

28 , 'cmd_type' , 0);

29

30 ci = struct('dev_type' , 0 ...

31 , 'power_src' , 0 ...

32 , 'rec_idle' , 0 ...

33 , 'sec_cap' , 0 ...

34 , 'allocate_add' , 0);

35

36 bp = struct ('asn' , 0 ...

37 , 'cluster_id' , 0 ...

38 , 'time_val' , 0 ...

76

39 , 'next_bcn_chan' , 0);

40

41 wia_cmd = struct ('dlsl_fc' , 0 ...

42 , 'dlsl_cmd_id' , 0 ...

43 , 'cal_time_val' , 0);

44

45 sf_states = struct('cap' , 0 ...

46 , 'cfp' , 0 ...

47 , 'intra' , 0 ...

48 , 'inter' , 0 ...

49 , 'sleep' , 0);

B.2.30 setup.m

1 % setup.m

2 % This script is used to initialize and test all of the devices

3

4 %%% global variables - section required for nodes

5 % global t

6 % t = tic;

7 % global ts

8 % ts = 1;

9 %

10 % global time_delay

11 % global t_asn;

12 % time_delay = {};

13 %

14 % global asn

15 % asn = 0;

16

17 %%% Tests

18

19 % %%% Single Cluster with 1 Node

20 % a=wia_ffd;

21 % b=wia_ffd;

22 % c=wia_rfd;

23 %

24 % a.set_pan_coord;

77

25 % initialize(a);

26 % a.set_pan_id(hex2dec('abcd'));

27 % a.name = 'ffd_1';

28 % a.set_long_add(1);

29 %

30 % b.name = 'ffd_2';

31 % initialize(b);

32 % b.pan_id = hex2dec('abcd');

33 % b.tx.p.src_pan_id = hex2dec('abcd');

34 % b.tx.p.dest_pan_id = hex2dec('abcd');

35 % b.set_long_add(2);

36 % b.my_short_address = '0100';

37 % b.assoc = 1;

38 % b.alloc = [24:31];

39 %

40 % c.name = 'rfd_1';

41 % initialize(c);

42 % c.pan_id =hex2dec('abcd');

43 % c.tx.p.src_pan_id = hex2dec('abcd');

44 % c.tx.p.dest_pan_id = hex2dec('abcd');

45 % c.set_long_add(4);

46 % c.my_short_address = '0101';

47 % c.assoc = 1;

48 % c.alloc=[16];

49 %

50 % a.n_table={b};

51 % b.n_table={a,c};

52 % c.n_table={b};

53 %

54 % a.start;

55 %

56 % % cluster 1

57 % b.start;

58 % c.start;

59

60 %%% Single Cluster with 8 Nodes

61 % a=wia_ffd;

62 % b=wia_ffd;

63 % c=wia_rfd;

64 % d=wia_rfd;

78

65 % e=wia_rfd;

66 % f=wia_rfd;

67 % g=wia_rfd;

68 % h=wia_rfd;

69 % i=wia_rfd;

70 % j=wia_rfd;

71 %

72 % a.set_pan_coord;

73 % initialize(a);

74 % a.set_pan_id(hex2dec('abcd'));

75 % a.name = 'ffd_1';

76 % a.set_long_add(1);

77 % a.alloc = [0];

78 %

79 % b.name = 'ffd_2';

80 % initialize(b);

81 % b.pan_id = hex2dec('abcd');

82 % b.tx.p.src_pan_id = hex2dec('abcd');

83 % b.tx.p.dest_pan_id = hex2dec('abcd');

84 % b.set_long_add(2);

85 % b.my_short_address = '0100';

86 % b.assoc = 1;

87 % b.alloc = [24:31];

88 %

89 % c.name = 'rfd_1';

90 % initialize(c);

91 % c.pan_id = hex2dec('abcd');

92 % c.tx.p.src_pan_id = hex2dec('abcd');

93 % c.tx.p.dest_pan_id = hex2dec('abcd');

94 % c.set_long_add(3);

95 % c.my_short_address = '0101';

96 % c.assoc = 1;

97 % c.alloc = [16];

98 %

99 % d.name = 'rfd_2';

100 % initialize(d);

101 % d.pan_id =hex2dec('abcd');

102 % d.tx.p.src_pan_id = hex2dec('abcd');

103 % d.tx.p.dest_pan_id = hex2dec('abcd');

104 % d.set_long_add(4);

79

105 % d.my_short_address = '0102';

106 % d.assoc = 1;

107 % d.alloc=[17];

108 % %

109 % e.name = 'rfd_3';

110 % initialize(e);

111 % e.pan_id =hex2dec('abcd');

112 % e.tx.p.src_pan_id = hex2dec('abcd');

113 % e.tx.p.dest_pan_id = hex2dec('abcd');

114 % e.set_long_add(5);

115 % e.my_short_address = '0103';

116 % e.assoc = 1;

117 % e.alloc = [18];

118 % %

119 % f.name = 'rfd_4';

120 % initialize(f);

121 % f.pan_id =hex2dec('abcd');

122 % f.tx.p.src_pan_id = hex2dec('abcd');

123 % f.tx.p.dest_pan_id = hex2dec('abcd');

124 % f.set_long_add(6);

125 % f.my_short_address = '0104';

126 % f.assoc = 1;

127 % f.alloc = [19];

128 % %

129 % g.name = 'rfd_5';

130 % initialize(g);

131 % g.pan_id =hex2dec('abcd');

132 % g.tx.p.src_pan_id = hex2dec('abcd');

133 % g.tx.p.dest_pan_id = hex2dec('abcd');

134 % g.set_long_add(7);

135 % g.my_short_address = '0105';

136 % g.assoc = 1;

137 % g.alloc = [20];

138 % %

139 % h.name = 'rfd_6';

140 % initialize(h);

141 % h.pan_id =hex2dec('abcd');

142 % h.tx.p.src_pan_id = hex2dec('abcd');

143 % h.tx.p.dest_pan_id = hex2dec('abcd');

144 % h.set_long_add(8);

80

145 % h.my_short_address = '0106';

146 % h.assoc = 1;

147 % h.alloc = [21];

148 % %

149 % i.name = 'rfd_7';

150 % initialize(i);

151 % i.pan_id =hex2dec('abcd');

152 % i.tx.p.src_pan_id = hex2dec('abcd');

153 % i.tx.p.dest_pan_id = hex2dec('abcd');

154 % i.set_long_add(9);

155 % i.my_short_address = '0107';

156 % i.assoc = 1;

157 % i.alloc = [22];

158 % %

159 % j.name = 'rfd_8';

160 % initialize(j);

161 % j.pan_id =hex2dec('abcd');

162 % j.tx.p.src_pan_id = hex2dec('abcd');

163 % j.tx.p.dest_pan_id = hex2dec('abcd');

164 % j.set_long_add(10);

165 % j.my_short_address = '0108';

166 % j.assoc = 1;

167 % j.alloc = [23];

168 %

169 % a.n_table={b};

170 % b.n_table={a,c,d,e,f,g,h,i,j};

171 % c.n_table={b};

172 % d.n_table={b};

173 % e.n_table={b};

174 % f.n_table={b};

175 % g.n_table={b};

176 % h.n_table={b};

177 % i.n_table={b};

178 % j.n_table={b};

179 %

180 % a.start;

181 %

182 % % cluster 1

183 % b.start;

184 % c.start;

81

185 % d.start;

186 % e.start;

187 % f.start;

188 % g.start;

189 % h.start;

190 % i.start;

191 % j.start;

192 %

193 %%% Two Clusters with 4 nodes each

194 % a=wia_ffd;

195 % b=wia_ffd;

196 % c=wia_ffd;

197 %

198 % d=wia_rfd;

199 % e=wia_rfd;

200 % f=wia_rfd;

201 % g=wia_rfd;

202 % h=wia_rfd;

203 % i=wia_rfd;

204 % j=wia_rfd;

205 % k=wia_rfd;

206 %

207 % a.set_pan_coord;

208 % initialize(a);

209 % a.set_pan_id(hex2dec('abcd'));

210 % a.name = 'ffd_1';

211 % a.set_long_add(1);

212 %

213 % b.name = 'ffd_2';

214 % initialize(b);

215 % b.pan_id = hex2dec('abcd');

216 % b.pan_coord_add = '0000';

217 % b.tx.p.src_pan_id = hex2dec('abcd');

218 % b.tx.p.dest_pan_id = hex2dec('abcd');

219 % b.set_long_add(2);

220 % b.my_short_address = '0100';

221 % b.assoc = 1;

222 % b.alloc = [24:27];

223 %

224 % c.name = 'ffd_3';

82

225 % initialize(c);

226 % c.pan_id = hex2dec('abcd');

227 % c.pan_coord_add = '0000';

228 % c.tx.p.src_pan_id = hex2dec('abcd');

229 % c.tx.p.dest_pan_id = hex2dec('abcd');

230 % c.set_long_add(3);

231 % c.my_short_address = '0200';

232 % c.assoc = 1;

233 % c.alloc = [28:31];

234 %

235 % d.name = 'rfd_1';

236 % initialize(d);

237 % d.pan_id =hex2dec('abcd');

238 % d.tx.p.src_pan_id = hex2dec('abcd');

239 % d.tx.p.dest_pan_id = hex2dec('abcd');

240 % d.set_long_add(4);

241 % d.my_short_address = '0101';

242 % d.assoc = 1;

243 % d.alloc=[16];

244 % %

245 % e.name = 'rfd_2';

246 % initialize(e);

247 % e.pan_id =hex2dec('abcd');

248 % e.tx.p.src_pan_id = hex2dec('abcd');

249 % e.tx.p.dest_pan_id = hex2dec('abcd');

250 % e.set_long_add(5);

251 % e.my_short_address = '0102';

252 % e.assoc = 1;

253 % e.alloc = [17];

254 % %

255 % f.name = 'rfd_3';

256 % initialize(f);

257 % f.pan_id =hex2dec('abcd');

258 % f.tx.p.src_pan_id = hex2dec('abcd');

259 % f.tx.p.dest_pan_id = hex2dec('abcd');

260 % f.set_long_add(6);

261 % f.my_short_address = '0103';

262 % f.assoc = 1;

263 % f.alloc = [18];

264 % %

83

265 % g.name = 'rfd_4';

266 % initialize(g);

267 % g.pan_id =hex2dec('abcd');

268 % g.tx.p.src_pan_id = hex2dec('abcd');

269 % g.tx.p.dest_pan_id = hex2dec('abcd');

270 % g.set_long_add(7);

271 % g.my_short_address = '0104';

272 % g.assoc = 1;

273 % g.alloc = [19];

274 % %

275 % h.name = 'rfd_5';

276 % initialize(h);

277 % h.pan_id =hex2dec('abcd');

278 % h.tx.p.src_pan_id = hex2dec('abcd');

279 % h.tx.p.dest_pan_id = hex2dec('abcd');

280 % h.set_long_add(8);

281 % h.my_short_address = '0201';

282 % h.assoc = 1;

283 % h.alloc = [16];

284 % %

285 % i.name = 'rfd_6';

286 % initialize(i);

287 % i.pan_id =hex2dec('abcd');

288 % i.tx.p.src_pan_id = hex2dec('abcd');

289 % i.tx.p.dest_pan_id = hex2dec('abcd');

290 % i.set_long_add(9);

291 % i.my_short_address = '0202';

292 % i.assoc = 1;

293 % i.alloc = [17];

294 % %

295 % j.name = 'rfd_7';

296 % initialize(j);

297 % j.pan_id =hex2dec('abcd');

298 % j.tx.p.src_pan_id = hex2dec('abcd');

299 % j.tx.p.dest_pan_id = hex2dec('abcd');

300 % j.set_long_add(10);

301 % j.my_short_address = '0203';

302 % j.assoc = 1;

303 % j.alloc = [18];

304 % %

84

305 % k.name = 'rfd_8';

306 % initialize(k);

307 % k.pan_id =hex2dec('abcd');

308 % k.tx.p.src_pan_id = hex2dec('abcd');

309 % k.tx.p.dest_pan_id = hex2dec('abcd');

310 % k.set_long_add(11);

311 % k.my_short_address = '0204';

312 % k.assoc = 1;

313 % k.alloc = [19];

314 %

315 %

316 % a.n_table={b};

317 % b.n_table={a,d,e,f,g};

318 % c.n_table={a,h,i,j,k};

319 % d.n_table={b};

320 % e.n_table={b};

321 % f.n_table={b};

322 % g.n_table={b};

323 % h.n_table={c};

324 % i.n_table={c};

325 % j.n_table={c};

326 % k.n_table={c};

327 %

328 % a.start;

329

330 % cluster 1

331 % b.start;

332 % d.start;

333 % e.start;

334 % f.start;

335 % g.start;

336

337 % cluster 2

338 % c.start;

339 % h.start;

340 % i.start;

341 % j.start;

342 % k.start;

85

THIS PAGE INTENTIONALLY LEFT BLANK

86

List of References

[1] K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams, and H. Adam, “Sp 800-82 revi-
sion 2. Guide to industrial control systems (ics) security: Supervisory control and
data acquisition (scada) systems, distributed control systems (dcs), and other control
system configurations such as programmable logic controllers (plc),” Gaithersburg,
MD, 2015.

[2] M. Chipley and D. Haegley. (n.d.). Cybersecuring Industrial Control Systems. The
Military Engineer. [Online]. Available: http://themilitaryengineer.com/index.php/
component/k2/item/261-cybersecuring-industrial-control-systems. Accessed Aug.
28, 2017.

[3] Navy and Marine Corps Industrial Control Systems Monitoring Stations, FC 4-141-
05N, Department of Defense, Washington, DC, 2015, pp. 1–37.

[4] B. Galloway and G. P. Hancke, “Introduction to industrial control networks,” IEEE
Communications Surveys Tutorials, vol. 15, no. 2, pp. 860–880, 2013.

[5] A. Willig, K. Matheus, and A. Wolisz, “Wireless technology in industrial networks,”
Proceedings of the IEEE, vol. 93, no. 6, pp. 1130–1151, June 2005.

[6] A. Nechibvute and C. Mudzingwa, “Wireless sensor networks for scada and indus-
trial control systems,” International Journal of Engineering and Technology, vol. 3,
no. 12, pp. 1025–1035, December 2013.

[7] “Ieee standard for local and metropolitan area networks–part 15.4: Low-rate wire-
less personal area networks (lr-wpans),” IEEE Std 802.15.4-2011 (Revision of IEEE
Std 802.15.4-2006), pp. 1–314, Sept 2011.

[8] M. Nobre, I. Silva, and L. Guedes, “Routing and scheduling algorithms for wire-
lesshart networks: A survey,” Sensors, no. 15, pp. 9703–9740, Apr 2015.

[9] Q. Wang and J. Jiang, “Comparative examination on architecture and protocol of
industrial wireless sensor network standards,” IEEE Communications Surveys Tuto-
rials, vol. 18, no. 3, pp. 2197–2219, 2016.

[10] M. Zheng, W. Liang, H. Yu, and Y. Xiao, “Performance analysis of the industrial
wireless networks standard: Wia-pa,” Mobile Networks and Applications, vol. 22,
no. 1, pp. 139–150, Feb 2017.

[11] Transmission of IPv6 Packets over WIA-PA Networks, draft-wang-6lo-wiapa-04,
2016.

87

http://themilitaryengineer.com/index.php/component/k2/item/261-cybersecuring-industrial-control-systems
http://themilitaryengineer.com/index.php/component/k2/item/261-cybersecuring-industrial-control-systems

[12] P. Haibo Zhang, M. Soldati, and M. Johansson, “Performance bounds and latency-
optimal scheduling for convergecast in wirelesshart networks,” IEEE Transactions
on Wireless Communications, vol. 12, no. 6, pp. 2688–2696, June 2013.

[13] Z. Z. Wu, “Research of wirelesshart network layer routing algorithm,” Applied Me-
chanics and Materials, vol. 336-338, pp. 1827–1832, July 2013.

[14] J. Ersvik, M. Gidlund, A. Ahlén, and T. Nyberg, “Analysis of reliability and en-
ergy consumption in industrial wireless sensor networks,” Uppsala universitet,
Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen
för teknikvetenskaper, Signaler och System, 2012.

[15] Z. Sheng, W. Xuanzhao, and L. Dongdong, “An improved low power time synchro-
nization algorithm for wirelesshart network,” in 2013 UKSim 15th International
Conference on Computer Modelling and Simulation (UKSim), 2013, pp. 672–676.

[16] M. Hua and L. Dong, “A closed-loop adjusting strategy for wirelesshart time syn-
chronization,” in 2011 11th International Symposium on Communications and Infor-
mation Technologies (ISCIT), 2011, pp. 131–135.

[17] M. Fang, Y. Sun, X. Zhang, and J. Sun, “Elots: Energy-efficient local optimization
time synchronization algorithm for wirelesshart networks,” in 2014 8th Annual IEEE
Systems Conference (SysCon), 2014, pp. 402–406.

[18] A. Depari, P. Ferrari, A. Flammini, and E. Sisinni, “Introducing a simulation tool
for wirelesshart networks,” IFAC Proceedings Volumes, vol. 42, no. 3, pp. 234–237,
2009.

[19] P. Zand, A. Dilo, and P. Havinga, “Implementation of wirelesshart in ns-2 simula-
tor,” in Proceedings of 2012 IEEE 17th International Conference on Emerging Tech-
nologies Factory Automation (ETFA 2012), Sept 2012, pp. 1–8.

[20] F. Rezha and F. Soo Young Shin, “Performance evaluation of isa100.11a industrial
wireless network,” in IET Conference Proceedings. Stevenage: The Institution of
Engineering and Technology, 2013.

[21] Y. Serizawa, T. Yano, M. Miyazaki, K. Mizugaki, R. Fujiwara, and M. Kokubo,
“Verification of interference avoidance effect with adaptive channel diversity method
based on isa100.11a standard,” in 2013 IEEE Radio and Wireless Symposium (RWS),
2013, pp. 361–363.

[22] M. Miyazaki, R. Fujiwara, K. Mizugaki, and M. Kokubo, “Adaptive channel diver-
sity method based on isa100.11a standard for wireless industrial monitoring,” in
2012 IEEE Radio and Wireless Symposium (RWS), 2012, pp. 131–134.

88

[23] T. Nhon and D.-S. Kim, “Traffic-aware message scheduling method for isa100.11a,”
in 2013 11th IEEE International Conference on Industrial Informatics (INDIN),
2013, pp. 649–654.

[24] Y. Wei and D.-S. Kim, “A self-stabilized firefly synchronization method for the
isa100.11a network,” in 2013 International Conference on ICT Convergence (ICTC),
2013, pp. 881–886.

[25] Y. Zhou, Q. Wang, and Y. Wan, High Accurate Time Synchronization Mechanism for
WIA-PA Network. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 93–104.

[26] X. Jin and P. Zeng, “A fast real-time scheduling algorithm for wia-pa,” Applied Me-
chanics and Materials, vol. 519-520, pp. 124–127, 2014.

[27] L. Meng and X. Du, “Research of industrial wireless network wia-pa multi-path
routing protocol wmdsr,” in 2011 International Symposium on Computer Science
and Society (ISCCS), 2011, pp. 51–54.

[28] Industrial networks – Wireless communication network and communication profiles
– WIA-PA, IEC 62601:2015, 2015.

[29] Y. Dongfeng and X. Yan-qun, “Design and implementation of low power consump-
tion based on wia-pa networks,” in 2010 3rd International Conference on Advanced
Computer Theory and Engineering(ICACTE), Aug 2010, vol. 4, pp. 572–575.

89

THIS PAGE INTENTIONALLY LEFT BLANK

90

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

91

	Introduction
	Wireless Sensor Networks
	Research Motivations and Objectives
	Thesis Contributions
	Thesis Organization

	Research Review
	WirelessHart
	ISA100.11A
	WIA-PA
	Chapter Summary

	WIA-PA System Model Implementation
	IEEE 802.15.4
	WIA-PA
	Chapter Summary

	Results and Analysis
	Experimental Design
	Simulation Model
	End-to-End Delay
	Received Packet Error Rate
	Link Utilization
	Chapter Summary

	Conclusions and Future Work Recommendations
	Summary and Conclusions
	Future Work

	CSMA/CA
	MATLAB Code
	Classes
	Functions

	List of References
	Initial Distribution List

